Rod String Analysis

Overview

The sucker rod string transmits motion from the surface pumping unit to the downhole pump. It is the most critical component in a rod pump system — rod failures account for the majority of rod pump workovers. Proper rod string design requires calculating loads, stress, stretch, and dynamic effects.


Rod Properties

Standard Rod Sizes

Nominal Size (in) Area (in²) Weight in Air (lbs/ft) Typical Use
5/8 0.3068 1.027 Upper section, deep wells
3/4 0.4418 1.480 General purpose
7/8 0.6013 2.013 Medium-deep wells
1 0.7854 2.630 Heavy loads
1-1/8 0.9940 3.328 Very heavy loads

Rod Weight Calculations

Weight in air:

Wair=wr×LW_{air} = w_r \times L

Buoyant weight in fluid:

Wbuoy=Wair(1γf/γs)W_{buoy} = W_{air}(1 - \gamma_f / \gamma_s)

Where:

  • wrw_r = rod weight per foot (lbs/ft)
  • LL = rod string length (ft)
  • γf\gamma_f = fluid specific gravity
  • γs\gamma_s = steel specific gravity (≈ 7.85)

The buoyancy factor (1γf/γs)(1 - \gamma_f/\gamma_s) is typically 0.87-0.93 for oilfield fluids.


Rod Stretch

Fluid Load Stretch

The weight of fluid above the pump stretches the rods:

δf=WfLArE=62.4γfL2Ap144ArE\delta_f = \frac{W_f \cdot L}{A_r \cdot E} = \frac{62.4 \gamma_f L^2 A_p}{144 A_r E}

Rod Weight Stretch

The rod string stretches under its own weight:

δr=wrL22ArE=γsL22E\delta_r = \frac{w_r L^2}{2 A_r E} = \frac{\gamma_s L^2}{2E}

Total Static Stretch

δtotal=δf+δr\delta_{total} = \delta_f + \delta_r

Parameter Value
EE (Young's modulus) 30 × 10⁶ psi
γs\gamma_s (steel density) 490 lbs/ft³

Tapered Rod Strings

For tapered strings with nn sections:

δf=WfEi=1nLiAr,i\delta_f = \frac{W_f}{E} \sum_{i=1}^{n} \frac{L_i}{A_{r,i}}

δr=12Ei=1nwr,iLi2Ar,i+1Ei=1nWbelow,iLiAr,i\delta_r = \frac{1}{2E} \sum_{i=1}^{n} \frac{w_{r,i} L_i^2}{A_{r,i}} + \frac{1}{E} \sum_{i=1}^{n} \frac{W_{below,i} \cdot L_i}{A_{r,i}}

Where Wbelow,iW_{below,i} is the weight of all rod sections below section ii.


Polished Rod Loads

Fluid Load

Wf=0.433×γf×L×ApW_f = 0.433 \times \gamma_f \times L \times A_p

This is the hydrostatic weight of the fluid column acting on the plunger area.

API 11L Dynamic Method

The API 11L method uses dimensionless acceleration factors that depend on the ratio N/N0N/N_0:

N0=vs4LN_0 = \frac{v_s}{4L}

Where vsv_s = speed of sound in steel ≈ 16,300 ft/s, and N0N_0 is the natural frequency of the rod string (in SPM after unit conversion).

Peak Polished Rod Load:

PPRL=Wf+Wr,buoy(1+F1)PPRL = W_f + W_{r,buoy}(1 + F_1)

Minimum Polished Rod Load:

MPRL=Wr,buoy(1F2)WfF2MPRL = W_{r,buoy}(1 - F_2) - W_f \cdot F_2

The factors F1F_1 and F2F_2 increase with pumping speed ratio N/N0N/N_0.

Simplified Method (Without Dynamic Factors)

For quick estimates:

PPRL=Wf+Wr,buoyPPRL = W_f + W_{r,buoy} MPRL=Wr,buoyMPRL = W_{r,buoy}

These ignore dynamic effects and are conservative for PPRL but non-conservative for rod stress range.

Load Range

ΔW=PPRLMPRL\Delta W = PPRL - MPRL

The load range determines:

  • Rod stress range (fatigue life)
  • Counterbalance requirements
  • Surface unit sizing

Stress Analysis

Maximum and Minimum Stress

σmax=PPRLAr\sigma_{max} = \frac{PPRL}{A_r}

σmin=MPRLAr\sigma_{min} = \frac{MPRL}{A_r}

Stress Range

Δσ=σmaxσmin=PPRLMPRLAr\Delta\sigma = \sigma_{max} - \sigma_{min} = \frac{PPRL - MPRL}{A_r}

Modified Goodman Diagram

Rod fatigue life is assessed using the modified Goodman criterion:

SaSe+SmSu1\frac{S_a}{S_e} + \frac{S_m}{S_u} \le 1

Where:

  • SaS_a = alternating stress = Δσ/2\Delta\sigma / 2
  • SmS_m = mean stress = (σmax+σmin)/2(\sigma_{max} + \sigma_{min}) / 2
  • SeS_e = endurance limit
  • SuS_u = ultimate tensile strength

Allowable Stress (API 11L)

Rod Grade SuS_u (psi) Allowable σmax\sigma_{max} (psi)
C (carbon) 90,000 25,000-30,000
K (alloy) 90,000 25,000-30,000
D (high strength) 115,000 30,000-40,000

Counterbalance and Torque

Ideal Counterbalance Effect

CBEideal=PPRL+MPRL2CBE_{ideal} = \frac{PPRL + MPRL}{2}

Peak Torque

Tpeak=(PPRLCBE)×S4×12T_{peak} = \frac{(PPRL - CBE) \times S}{4 \times 12}

The factor of 12 converts inches to feet for torque in ft-lbs.

Polished Rod Horsepower

PRHP=ΔW×S×N33,000×12PRHP = \frac{\Delta W \times S \times N}{33,000 \times 12}

Where 33,000 ft-lbs/min = 1 HP.


Design Guidelines

Design Check Criterion Action if Failed
Rod stress < allowable σmax<σallow\sigma_{max} < \sigma_{allow} Increase rod size or reduce load
Adequate stroke Sp/S>0.5S_p / S > 0.5 Increase surface stroke or reduce depth
Speed below critical N/N0<0.35N/N_0 < 0.35 Reduce pumping speed
Positive MPRL MPRL>0MPRL > 0 Adjust counterbalance


References

  1. API Recommended Practice 11L (2008). "Design Calculations for Sucker Rod Pumping Systems (Conventional Units)." American Petroleum Institute.

  2. Takacs, G. (2015). Sucker-Rod Pumping Handbook. Gulf Professional Publishing.

  3. Gibbs, S.G. (1963). "Predicting the Behavior of Sucker-Rod Pumping Systems." Journal of Petroleum Technology, 15(7), 769-778. SPE-588-PA.

  4. Gipson, F.W. and Swaim, H.W. (1988). "The Beam Pumping Design Chain." In Petroleum Engineering Handbook. SPE.

  5. Brown, K.E. (1980). The Technology of Artificial Lift Methods, Vol. 2a. PennWell Books.

An unhandled error has occurred. Reload X