Pipeline Flow Equations for Gas, Liquid, and Two-Phase Systems

Overview

Pipeline calculations determine fluid transport capacity and pressure losses in surface lines. These calculations are critical for sizing gathering lines, designing gas transmission pipelines, and evaluating system capacity under changing production conditions.


Single-Phase Gas Pipelines

General Energy Equation

All gas pipeline equations derive from the steady-state energy balance for compressible flow:

Qsc=C[(P12P22)D5fγgTˉZˉL]1/2Q_{sc} = C \cdot \left[\frac{(P_1^2 - P_2^2) \cdot D^5}{f \cdot \gamma_g \cdot \bar{T} \cdot \bar{Z} \cdot L}\right]^{1/2}

Where QscQ_{sc} = gas rate (scf/d), P1P_1/P2P_2 = inlet/outlet pressure (psia), DD = pipe diameter (in.), ff = Moody friction factor, γg\gamma_g = gas specific gravity, Tˉ\bar{T} = average temperature (R), Zˉ\bar{Z} = average compressibility factor, and LL = length (miles).

The three classical equations differ in how they treat the friction factor.

Weymouth Equation (1912)

Assumes friction factor depends only on diameter: f=0.032/D1/3f = 0.032/D^{1/3}

Qsc=433.5[(P12P22)D16/3γgTˉZˉL]1/2Q_{sc} = 433.5 \cdot \left[\frac{(P_1^2 - P_2^2) \cdot D^{16/3}}{\gamma_g \cdot \bar{T} \cdot \bar{Z} \cdot L}\right]^{1/2}

Conservative for large-diameter pipes. Best for short, small-diameter lines (< 12 in.).

Panhandle A Equation (1956)

Incorporates Reynolds number effects implicitly for partially turbulent flow:

Qsc=435.87E[(P12P22)γg0.8539TˉZˉL]0.5394D2.6182Q_{sc} = 435.87 \cdot E \cdot \left[\frac{(P_1^2 - P_2^2)}{\gamma_g^{0.8539} \cdot \bar{T} \cdot \bar{Z} \cdot L}\right]^{0.5394} \cdot D^{2.6182}

Where EE is the pipeline efficiency (0.90--0.95 new, 0.80--0.90 older pipe). Best for medium-diameter lines (4--12 in.).

Panhandle B Equation (1956)

Optimized for fully turbulent flow in large-diameter pipelines:

Qsc=737.02E[(P12P22)γg0.9608TˉZˉL]0.5100D2.5300Q_{sc} = 737.02 \cdot E \cdot \left[\frac{(P_1^2 - P_2^2)}{\gamma_g^{0.9608} \cdot \bar{T} \cdot \bar{Z} \cdot L}\right]^{0.5100} \cdot D^{2.5300}

Best for large-diameter transmission lines (16--48 in.) over long distances.

Gas Equation Comparison

Property Weymouth Panhandle A Panhandle B
Friction treatment f=0.032/D1/3f = 0.032/D^{1/3} Implicit in exponents Implicit in exponents
Flow regime Fully turbulent Partially turbulent Fully turbulent
Best for diameter < 12 in. 4--12 in. > 16 in.
Efficiency factor No Yes Yes
Conservatism Most conservative Moderate Least conservative

Average Pressure

The correct average pressure along a gas pipeline is:

Pˉ=23(P1+P2P1P2P1+P2)\bar{P} = \frac{2}{3}\left(P_1 + P_2 - \frac{P_1 \cdot P_2}{P_1 + P_2}\right)

The average Z-factor should be evaluated at Pˉ\bar{P} and Tˉ\bar{T}.


Single-Phase Liquid Pipelines

Darcy-Weisbach Equation

For incompressible liquid flow:

ΔP=fLDρLv22gc\Delta P = f \cdot \frac{L}{D} \cdot \frac{\rho_L v^2}{2 g_c}

In oilfield units:

ΔP=fLρLv225.8D\Delta P = \frac{f \cdot L \cdot \rho_L \cdot v^2}{25.8 \cdot D}

Where ΔP\Delta P = pressure drop (psi), ff = Moody friction factor, LL = length (ft), DD = diameter (in.), ρL\rho_L = liquid density (lb/ft^3), vv = velocity (ft/s).

Friction Factor

Reynolds number: Re=ρLvD/μLRe = \rho_L v D / \mu_L

Laminar (Re<2100Re < 2100): f=64/Ref = 64/Re

Turbulent (Re>4000Re > 4000) --- Colebrook-White (implicit):

1f=2log10(ε/D3.7+2.51Ref)\frac{1}{\sqrt{f}} = -2 \log_{10}\left(\frac{\varepsilon/D}{3.7} + \frac{2.51}{Re\sqrt{f}}\right)

Swamee-Jain approximation (explicit, valid 5000<Re<1085000 < Re < 10^8):

f=0.25[log10(ε/D3.7+5.74Re0.9)]2f = \frac{0.25}{\left[\log_{10}\left(\frac{\varepsilon/D}{3.7} + \frac{5.74}{Re^{0.9}}\right)\right]^2}

Typical Pipe Roughness

Material ε\varepsilon (in.)
Commercial steel (new) 0.0018
Commercial steel (corroded) 0.006--0.024
Plastic (HDPE) 0.00006
Fiberglass (FRP) 0.0003

Two-Phase Pipeline Flow

When gas and liquid flow together, pressure drop depends on liquid holdup, flow regime, and phase slippage. Empirical correlations are required.

Eaton Correlation (1967)

Empirical correlations for liquid holdup and friction factor in horizontal two-phase flow:

HL=f(vSLvm,vm2gD,ρLρg,μLμg)H_L = f\left(\frac{v_{SL}}{v_m}, \frac{v_m^2}{gD}, \frac{\rho_L}{\rho_g}, \frac{\mu_L}{\mu_g}\right)

The two-phase pressure gradient uses mixture density based on holdup:

dPdL=ftpρmvm22gcD+ρmgsinθ\frac{dP}{dL} = \frac{f_{tp} \cdot \rho_m \cdot v_m^2}{2 g_c \cdot D} + \rho_m \cdot g \cdot \sin\theta

Where ρm=ρLHL+ρg(1HL)\rho_m = \rho_L H_L + \rho_g(1 - H_L).

Dukler Correlation (1964)

A similarity analysis approach using no-slip mixture properties:

ρns=ρLλL+ρg(1λL)\rho_{ns} = \rho_L \lambda_L + \rho_g (1 - \lambda_L)

Where λL=vSL/(vSL+vSG)\lambda_L = v_{SL}/(v_{SL} + v_{SG}) is the input liquid fraction. Dukler correlates the ratio ftp/f0f_{tp}/f_0 as a function of λL\lambda_L.

Feature Eaton Dukler
Holdup model Empirical correlation Separate model or assumed
Best for Low to moderate liquid loading Gas-dominant systems
Orientation Horizontal only Horizontal only

Flow Regime Identification

Baker Flow Regime Map (1954)

Uses dimensionless parameters based on mass velocities GLG_L and GGG_G:

By=GGλ,Bx=GLGGλψB_y = \frac{G_G}{\lambda}, \qquad B_x = \frac{G_L}{G_G} \cdot \lambda \cdot \psi

Where:

λ=[ρgρairρLρw]0.5,ψ=σwσL[μLμw(ρwρL)2]1/3\lambda = \left[\frac{\rho_g}{\rho_{air}} \cdot \frac{\rho_L}{\rho_w}\right]^{0.5}, \qquad \psi = \frac{\sigma_w}{\sigma_L} \cdot \left[\frac{\mu_L}{\mu_w} \cdot \left(\frac{\rho_w}{\rho_L}\right)^2\right]^{1/3}

  B_y (Gas mass velocity / lambda)
   |
   |  DISPERSED (mist/spray)
   | ----------------------------
   |  ANNULAR
   | ------------------------
   |  SLUG
   | ------------------
   |  PLUG
   | ------------
   |  STRATIFIED (smooth and wavy)
   |
   +-------------------------------- B_x (Liquid/Gas ratio)

Mandhane Flow Regime Map (1974)

A simpler map using superficial velocities directly:

Flow Regime vSGv_{SG} (ft/s) vSLv_{SL} (ft/s)
Stratified smooth < 10 < 0.03
Stratified wavy 5--50 0.01--0.3
Slug 3--30 0.3--10
Annular > 30 < 3
Dispersed bubble < 30 > 3

The Mandhane map is preferred for its simplicity and direct use of measurable quantities.


Applicability and Limitations

Equation Valid Range Key Limitation
Weymouth Short lines, D < 12 in. Overpredicts friction for large pipes
Panhandle A 4×106<Re<1074 \times 10^6 < Re < 10^7 Not for fully turbulent flow
Panhandle B Re>107Re > 10^7 Not for low-flow conditions
Darcy-Weisbach Incompressible, Newtonian fluids Not for non-Newtonian fluids
Eaton/Dukler Horizontal two-phase Not for vertical or steeply inclined pipes


References

  1. Weymouth, T.R. (1912). "Problems in Natural Gas Engineering." Transactions of the ASME, 34, pp. 185-234.

  2. Katz, D.L. and Lee, R.L. (1990). Natural Gas Engineering: Production and Storage. McGraw-Hill. Chapters 8-10.

  3. Eaton, B.A., Andrews, D.E., Knowles, C.R., Silberberg, I.H., and Brown, K.E. (1967). "The Prediction of Flow Patterns, Liquid Holdup and Pressure Losses Occurring During Continuous Two-Phase Flow in Horizontal Pipelines." Journal of Petroleum Technology, 19(6), pp. 815-828. SPE-1525-PA.

  4. Dukler, A.E., Wicks, M., and Cleveland, R.G. (1964). "Frictional Pressure Drop in Two-Phase Flow: A Comparison of Existing Correlations." AIChE Journal, 10(1), pp. 38-43.

  5. Mandhane, J.M., Gregory, G.A., and Aziz, K. (1974). "A Flow Pattern Map for Gas-Liquid Flow in Horizontal Pipes." International Journal of Multiphase Flow, 1(4), pp. 537-553.

An unhandled error has occurred. Reload X