Gas PVT Properties

Overview

Accurate prediction of natural gas properties is fundamental to:

  • Reservoir simulation — Material balance, GIIP calculations
  • Well deliverability — Backpressure equations, AOF determination
  • Pipeline design — Pressure drop, compression requirements
  • Gas lift optimization — Injection rate and pressure design
  • Gas processing — Separation, dehydration, compression

This document covers correlations for essential gas PVT properties:

  • Compressibility factor (Z) — Real gas deviation from ideal behavior
  • Gas formation volume factor (Bg) — Volume change from standard to reservoir conditions
  • Gas compressibility (Cg) — Pressure-volume relationship
  • Gas viscosity (μg) — Flow resistance
  • Gas density (ρg) — Mass per unit volume
  • Pseudo-critical properties — Ppc, Tpc for correlations

Real Gas Behavior and Z-Factor

The Gas Compressibility Factor

Real gases deviate from ideal gas law (pV=nRTpV = nRT) due to:

  1. Molecular volume — Gas molecules occupy space
  2. Intermolecular forces — Attraction and repulsion between molecules

The compressibility factor (Z) corrects for this deviation:

pV=ZnRTpV = Z n RT

Where:

  • ZZ = gas compressibility factor (dimensionless)
  • Z=1Z = 1 for ideal gas
  • Z<1Z < 1 at low P, high T (attraction dominates)
  • Z>1Z > 1 at high P (molecular volume dominates)

Corresponding States Principle

The principle of corresponding states allows prediction of Z using reduced properties:

Z=f(pr,Tr)Z = f(p_r, T_r)

Where:

  • pr=p/ppcp_r = p / p_{pc} = reduced pressure
  • Tr=T/TpcT_r = T / T_{pc} = reduced temperature
  • ppcp_{pc}, TpcT_{pc} = pseudo-critical pressure and temperature

Physical basis: All fluids behave similarly when compared at same reduced conditions (same distance from critical point).


Pseudo-Critical Properties

Standing Correlations (1977)

Standing developed correlations for sweet natural gases (no H₂S or CO₂) based on gas specific gravity:

ppc=756.8131.0γg3.6γg2p_{pc} = 756.8 - 131.0 \gamma_g - 3.6 \gamma_g^2Tpc=169.2+349.5γg74.0γg2T_{pc} = 169.2 + 349.5 \gamma_g - 74.0 \gamma_g^2

Where:

  • ppcp_{pc} = pseudo-critical pressure, psia
  • TpcT_{pc} = pseudo-critical temperature, °R
  • γg\gamma_g = gas specific gravity (air = 1.0)

Applicability:

  • Gas gravity: 0.55 to 1.60
  • Temperatures: to 360°F
  • Pressures: to 12,500 psia
  • Accuracy: Z-factor within ±2% of experimental
  • Sweet gases only (minimal H₂S, CO₂)

Physical trends:

  • Heavier gases (high γg) → Lower Tpc, lower Ppc
  • Methane (γg ≈ 0.55): Tpc ≈ 343°R, Ppc ≈ 667 psia
  • Heavy gas (γg ≈ 1.0): Tpc ≈ 393°R, Ppc ≈ 623 psia

Sutton Correlations (1985)

Sutton improved Standing's correlations for better accuracy with separator gas:

ppc=787147γg7.5γg2p_{pc} = 787 - 147 \gamma_g - 7.5 \gamma_g^2Tpc=169+314γg71.3γg2T_{pc} = 169 + 314 \gamma_g - 71.3 \gamma_g^2

Advantages over Standing:

  • Better for separator gas compositions
  • Accounts for presence of intermediate hydrocarbons (C₂-C₆)
  • Slightly better accuracy for condensate gases

When to use:

  • Standing — Standard choice for most applications
  • Sutton — When dealing with separator gas from high-GOR wells
  • Either gives acceptable results within typical engineering accuracy

Acid Gas Corrections

For sour gases containing H₂S and CO₂, apply Wichert-Aziz corrections:

Tpc=TpcϵT_{pc}' = T_{pc} - \epsilonppc=ppcTpcTpc+yH2S(1yH2S)ϵp_{pc}' = \frac{p_{pc} T_{pc}'}{T_{pc} + y_{H_2S}(1 - y_{H_2S})\epsilon}

Where:

ϵ=120(facid0.9+facid1.6)+(fH2S0.5fH2S4)\epsilon = 120(f_{acid}^{0.9} + f_{acid}^{1.6}) + (f_{H_2S}^{0.5} - f_{H_2S}^4)

And:

  • facid=yH2S+yCO2f_{acid} = y_{H_2S} + y_{CO_2} (total acid gas fraction)
  • yH2Sy_{H_2S}, yCO2y_{CO_2} = mole fractions of H₂S and CO₂

Applicability:

  • CO₂ to 55 mol%
  • H₂S to 74 mol%
  • Temperatures to 300°F
  • Pressures to 7,000 psia
  • Z-factor accuracy within ±5%

Z-Factor Correlations

Dranchuk-Abou-Kassem (DAK) Correlation (1975)

The DAK correlation is the industry standard for Z-factor calculation. It fits the Standing-Katz chart using an 11-coefficient equation of state:

Z=1+(A1+A2Tr+A3Tr3+A4Tr4+A5Tr5)ρrZ = 1 + \left(A_1 + \frac{A_2}{T_r} + \frac{A_3}{T_r^3} + \frac{A_4}{T_r^4} + \frac{A_5}{T_r^5}\right)\rho_r+(A6+A7Tr+A8Tr2)ρr2A9(A7Tr+A8Tr2)ρr5+ \left(A_6 + \frac{A_7}{T_r} + \frac{A_8}{T_r^2}\right)\rho_r^2 - A_9\left(\frac{A_7}{T_r} + \frac{A_8}{T_r^2}\right)\rho_r^5+A10(1+A11ρr2)ρr2Tr3exp(A11ρr2)+ A_{10}\left(1 + A_{11}\rho_r^2\right)\frac{\rho_r^2}{T_r^3}\exp\left(-A_{11}\rho_r^2\right)

Where the reduced density is calculated iteratively from:

ρr=0.27prZTr\rho_r = \frac{0.27 p_r}{Z T_r}

Coefficients:

Coefficient Value Coefficient Value
A1A_1 0.3265 A7A_7 -0.7361
A2A_2 -1.0700 A8A_8 0.1844
A3A_3 -0.5339 A9A_9 0.1056
A4A_4 0.01569 A10A_{10} 0.6134
A5A_5 -0.05165 A11A_{11} 0.7210
A6A_6 0.5475

Calculation procedure:

  1. Calculate pr=p/ppcp_r = p/p_{pc} and Tr=T/TpcT_r = T/T_{pc}
  2. Initialize Z=1.0Z = 1.0 (first guess)
  3. Calculate ρr=0.27pr/(ZTr)\rho_r = 0.27 p_r / (Z T_r)
  4. Evaluate ZZ from equation
  5. Repeat steps 3-4 until convergence (typically 3-5 iterations)

Accuracy:

  • Within 1% of Standing-Katz chart for 0.2 < prp_r < 15, 0.7 < TrT_r < 3.0
  • Within 3% for 15 < prp_r < 30 (very high pressure)

Advantages:

  • Direct algebraic evaluation (no chart reading)
  • Highly accurate across wide range
  • Extrapolates well outside original data range
  • Industry-standard implementation

Brill-Beggs Z-Factor (1973)

Simplified correlation for quick hand calculations (less accurate than DAK):

A=1.39(Tr0.92)0.50.36Tr0.101A = 1.39(T_r - 0.92)^{0.5} - 0.36 T_r - 0.101B=(0.620.23Tr)pr+(0.066Tr0.860.037)pr2+0.32109(Tr1)pr6B = (0.62 - 0.23 T_r) p_r + \left(\frac{0.066}{T_r - 0.86} - 0.037\right) p_r^2 + \frac{0.32}{10^{9(T_r-1)}} p_r^6C=0.1320.32logTrC = 0.132 - 0.32 \log T_rD=10(0.31060.49Tr+0.1824Tr2)D = 10^{(0.3106 - 0.49 T_r + 0.1824 T_r^2)}Z=A+(1A)eB+CprDZ = A + (1 - A) e^{-B} + C p_r^D

When to use:

  • Quick estimates without iteration
  • Spreadsheet without circular reference capability
  • Accuracy ±5% (adequate for many engineering calculations)

Gas Formation Volume Factor (Bg)

The gas FVF relates reservoir volume to standard volume:

Bg=VRVsc=ZTP×PscTscB_g = \frac{V_R}{V_{sc}} = \frac{Z T}{P} \times \frac{P_{sc}}{T_{sc}}

Using standard conditions (14.65 psia, 60°F = 520°R):

Bg=0.00502ZTpB_g = 0.00502 \frac{Z T}{p}

Or in field units (res bbl/scf):

Bg=0.00502×Z×TpB_g = \frac{0.00502 \times Z \times T}{p}

Where:

  • BgB_g = gas formation volume factor, res bbl/scf
  • ZZ = compressibility factor at (p,T)(p, T)
  • TT = temperature, °R
  • pp = pressure, psia

Physical interpretation:

  • BgB_g increases with temperature (expansion)
  • BgB_g decreases with pressure (compression)
  • Typical values: 0.0005 to 0.01 bbl/scf (reservoir conditions)

Gas Compressibility (Cg)

The isothermal gas compressibility measures volume change with pressure:

Cg=1V(Vp)T=1p1Z(Zp)TC_g = -\frac{1}{V}\left(\frac{\partial V}{\partial p}\right)_T = \frac{1}{p} - \frac{1}{Z}\left(\frac{\partial Z}{\partial p}\right)_T

On a pseudo-reduced basis:

cpr=Cgppc=1pr0.27Z2Tr[(Z/ρr)Tr1+(ρr/Z)(Z/ρr)Tr]c_{pr} = C_g p_{pc} = \frac{1}{p_r} - \frac{0.27}{Z^2 T_r}\left[\frac{(\partial Z/\partial \rho_r)_{T_r}}{1 + (\rho_r/Z)(\partial Z/\partial \rho_r)_{T_r}}\right]

The derivative Z/ρr\partial Z/\partial \rho_r is obtained by differentiating the DAK equation.

Practical approximation:

For moderate pressures (prp_r < 5):

Cg1pC_g \approx \frac{1}{p}

For all pressures, calculate from Z using numerical differentiation or use charts.

Typical values:

  • Low pressure (100 psia): Cg ≈ 0.01 psi⁻¹
  • Moderate pressure (1000 psia): Cg ≈ 0.001 psi⁻¹
  • High pressure (5000 psia): Cg ≈ 0.0002 psi⁻¹

Gas Density

Gas density at reservoir conditions:

ρg=pMgZRT\rho_g = \frac{p M_g}{Z R T}

Using molecular weight Mg=28.96γgM_g = 28.96 \gamma_g (where air MW = 28.96):

ρg=28.96γgp10.73ZT\rho_g = \frac{28.96 \gamma_g p}{10.73 Z T}

Simplifying:

ρg=2.70γgpZT\rho_g = \frac{2.70 \gamma_g p}{Z T}

Where:

  • ρg\rho_g = gas density, lb/ft³
  • γg\gamma_g = gas specific gravity (air = 1.0)
  • pp = pressure, psia
  • TT = temperature, °R
  • ZZ = compressibility factor

At standard conditions (14.65 psia, 60°F, Z ≈ 1.0):

ρg,sc=0.0764γg lb/ft3\rho_{g,sc} = 0.0764 \gamma_g \text{ lb/ft}^3

Or equivalently: 1 scf of gas weighs (0.0764γg/5.615)(0.0764 \gamma_g / 5.615) lb/scf.


Gas Viscosity — Lee-Gonzalez-Eakin (LGE) Correlation (1966)

Gas viscosity affects flow resistance in reservoirs, wells, and pipelines. The LGE correlation predicts μg from density and molecular weight:

μg=Kexp(XρgY)×104\mu_g = K \exp\left(X \rho_g^Y\right) \times 10^{-4}

Where:

K=(7.77+0.0063Ma)T1.5122.4+12.9Ma+TK = \frac{(7.77 + 0.0063 M_a) T^{1.5}}{122.4 + 12.9 M_a + T}X=2.57+1914.5T+0.0095MaX = 2.57 + \frac{1914.5}{T} + 0.0095 M_aY=1.11+0.04XY = 1.11 + 0.04 X

And:

  • μg\mu_g = gas viscosity, cP
  • ρg\rho_g = gas density, g/cm³ (divide lb/ft³ by 62.4)
  • MaM_a = apparent molecular weight = 28.96γg28.96 \gamma_g
  • TT = temperature, °R

Accuracy:

  • Standard deviation: ±1.9% for light hydrocarbons
  • ±5% for natural gas mixtures
  • Valid to 340°F and 8,000 psia

Physical trends:

  • μg increases with pressure (increased density, molecular collisions)
  • μg increases with temperature (faster molecular motion)
  • Heavier gases have higher viscosity

Typical values:

  • Light gas (γg = 0.6) at 1000 psia, 150°F: μg ≈ 0.015 cP
  • Heavy gas (γg = 0.9) at 3000 psia, 200°F: μg ≈ 0.025 cP


References

  1. Dranchuk, P.M. and Abou-Kassem, J.H. (1975). "Calculation of Z Factors for Natural Gases Using Equations of State." Journal of Canadian Petroleum Technology, 14(3), pp. 34-36. PETSOC-75-03-03.

  2. Lee, A.L., Gonzalez, M.H., and Eakin, B.E. (1966). "The Viscosity of Natural Gases." Journal of Petroleum Technology, 18(8), pp. 997-1000. SPE-1340-PA.

  3. McCain, W.D. Jr. (1991). "Reservoir-Fluid Property Correlations—State of the Art." SPE Reservoir Engineering, 6(2), pp. 266-272. SPE-18571-PA.

  4. Standing, M.B. (1977). "Volumetric and Phase Behavior of Oil Field Hydrocarbon Systems." 9th Printing. Richardson, TX: Society of Petroleum Engineers.

  5. Sutton, R.P. (1985). "Compressibility Factors for High-Molecular-Weight Reservoir Gases." SPE 14265, presented at SPE Annual Technical Conference, Las Vegas.

  6. Wichert, E. and Aziz, K. (1972). "Calculate Z's for Sour Gases." Hydrocarbon Processing, 51(5), pp. 119-122.

  7. Ahmed, T. (2019). Reservoir Engineering Handbook, 5th Edition. Cambridge, MA: Gulf Professional Publishing. Chapter 3: Fundamentals of Rock Properties.

  8. Whitson, C.H. and Brule, M.R. (2000). Phase Behavior. Monograph Series Vol. 20. Richardson, TX: Society of Petroleum Engineers. Chapter 4: Natural Gas Properties.

An unhandled error has occurred. Reload X