Ansah-Knowles-Buba (AKB) Decline Model

The Ansah-Knowles-Buba (AKB) model is a semi-analytical decline model specifically developed for gas wells under boundary-dominated flow conditions. Unlike empirical Arps models, AKB is derived from material balance principles coupled with stabilized gas deliverability equations.


Theory

Physical Basis

The AKB model addresses the challenge of non-linear gas flow by linearizing the pressure-dependent gas properties. The key insight is that the μg(p)·cg(p) product can be approximated by a first-order polynomial function of pressure, enabling semi-analytical solutions.

The model couples:

  1. Gas material balance equation — relates cumulative production to reservoir pressure
  2. Stabilized gas deliverability — valid for boundary-dominated flow (pseudo-steady state)

This approach provides a more rigorous treatment of gas compressibility changes than purely empirical methods.

Rate Equation

The semi-analytical rate-time relationship is:

qg(t)=qgi4α2exp(βt)[(1+α)(1α)exp(βt)]2q_g(t) = q_{gi} \cdot \frac{4\alpha^2 \exp(-\beta t)}{\left[(1+\alpha) - (1-\alpha)\exp(-\beta t)\right]^2}

Where:

Parameter Description Units
qgiq_{gi} Initial gas rate L³/T (e.g., Mscf/day)
α\alpha Dimensionless pressure ratio dimensionless
β\beta Decline parameter 1/T (e.g., 1/day)
tt Time T (e.g., days)

Parameter Definitions

The dimensionless parameter α\alpha represents the ratio of wellbore to initial reservoir conditions:

α=pwf/zwfpi/zi\alpha = \frac{p_{wf}/z_{wf}}{p_i/z_i}

The decline parameter β\beta incorporates reservoir and well properties:

β=pwfzwfJgpi/zi1ctiG\beta = \frac{p_{wf}}{z_{wf}} \cdot \frac{J_g}{p_i/z_i} \cdot \frac{1}{c_{ti} \cdot G}

Where:

Symbol Description Units
pwfp_{wf} Flowing bottomhole pressure psia
zwfz_{wf} Gas deviation factor at pwfp_{wf} dimensionless
pip_i Initial reservoir pressure psia
ziz_i Gas deviation factor at pip_i dimensionless
JgJ_g Gas productivity index Mscf/day/psi²
ctic_{ti} Total compressibility at initial conditions 1/psi
GG Original gas in place Mscf

Gas Productivity Index

The productivity index JgJ_g for stabilized flow is:

Jg=2kh141.2μiBgiln(2.2458ACArwa2)J_g = \frac{2kh}{141.2 \mu_i B_{gi} \ln\left(\frac{2.2458A}{C_A r_{wa}^2}\right)}

Where:

Symbol Description Units
kk Permeability md
hh Net pay thickness ft
μi\mu_i Gas viscosity at initial conditions cp
BgiB_{gi} Gas formation volume factor at pip_i rcf/scf
AA Drainage area ft²
CAC_A Dietz shape factor dimensionless
rwar_{wa} Apparent wellbore radius (including skin) ft

Cumulative Production

Integrating the rate equation yields cumulative production:

Gp(t)=qgi2α(exp(βt)1)β[α1+(1+α)exp(βt)]G_p(t) = q_{gi} \cdot \frac{2\alpha(\exp(\beta t) - 1)}{\beta\left[\alpha - 1 + (1+\alpha)\exp(\beta t)\right]}

Special Case: α → 0

When α\alpha approaches zero (very low flowing pressure relative to initial pressure), the rate equation simplifies to:

qg(t)=qgi(1+βt2)2q_g(t) = \frac{q_{gi}}{\left(1 + \frac{\beta t}{2}\right)^2}

This limit avoids numerical instability from the 0/0 indeterminate form.


Diagnostic Functions

Loss-Ratio (D-function)

The instantaneous decline rate for AKB:

D(t)=β[1+exp(βt)+α(exp(βt)1)]α+exp(βt)+αexp(βt)1D(t) = \frac{\beta\left[1 + \exp(\beta t) + \alpha(\exp(\beta t) - 1)\right]}{\alpha + \exp(\beta t) + \alpha\exp(\beta t) - 1}

b-Parameter

The time-varying b-parameter:

b(t)=2exp(βt)(1α2)[1α+(1+α)exp(βt)]2b(t) = \frac{2\exp(\beta t)(1 - \alpha^2)}{\left[1 - \alpha + (1+\alpha)\exp(\beta t)\right]^2}

Unlike Arps hyperbolic where bb is constant, AKB exhibits time-varying bb that captures the physics of gas reservoir depletion.


Functions

Rate Calculation

AnsahKnowlesBubaDeclineRate — Production rate at time t

Parameters:

Parameter Description Units
Qi Initial production rate L³/T
alpha Dimensionless pressure ratio dimensionless
beta Decline parameter 1/T
time Evaluation time T

Returns: Production rate at the specified time, [L³/T]


Cumulative Production

AnsahKnowlesBubaDeclineCumulative — Cumulative production to time t

Parameters:

Parameter Description Units
Qi Initial production rate L³/T
alpha Dimensionless pressure ratio dimensionless
beta Decline parameter 1/T
time Evaluation time T

Returns: Cumulative production from time 0 to t, [L³]


Economic Life

AnsahKnowlesBubaDeclineTime — Time to reach economic limit

Parameters:

Parameter Description Units
Qi Initial production rate L³/T
alpha Dimensionless pressure ratio dimensionless
beta Decline parameter 1/T
econRate Economic rate limit L³/T

Returns: Time when production rate falls to the economic limit, [T]


EUR Calculation

AnsahKnowlesBubaDeclineEUR — Estimated Ultimate Recovery

Parameters:

Parameter Description Units
Qi Initial production rate L³/T
alpha Dimensionless pressure ratio dimensionless
beta Decline parameter 1/T
econRate Economic rate limit L³/T

Returns: Cumulative production to the economic limit, [L³]


Curve Fitting

AnsahKnowlesBubaDeclineFitParameters — Fit model to production data

Parameters:

Parameter Description Type
timeValues Array of time samples Range or array
rateValues Array of observed rates Range or array

Returns: Array [Qi, Alpha, Beta] of fitted parameters


Weighted Curve Fitting

AnsahKnowlesBubaDeclineWeightedFitParameters — Fit with weighted samples

Parameters:

Parameter Description Type
timeValues Array of time samples Range or array
rateValues Array of observed rates Range or array
weightsValues Per-sample weights Range or array

Returns: Array [Qi, Alpha, Beta] of fitted parameters

Use weights to emphasize recent production data or de-emphasize periods with operational issues.


When to Use AKB

Best Applications

Scenario Reason
Gas wells in depletion Derived from gas material balance
Boundary-dominated flow Assumes pseudo-steady state
Known reservoir properties Can estimate α\alpha and β\beta from reservoir data
Physics-based forecasting More rigorous than empirical Arps

Comparison with Arps Models

Aspect AKB Arps Hyperbolic
Derivation Semi-analytical (material balance) Purely empirical
b-parameter Time-varying Constant
Gas compressibility Explicitly handled Ignored
Parameter meaning Tied to reservoir properties Curve-fit only
Best for Gas wells, physics-based Oil wells, quick estimates

Limitations

  • Requires boundary-dominated flow (not valid for transient or fracture-dominated flow)
  • Assumes stabilized deliverability equation applies
  • Linear approximation of μgcg may lose accuracy at very low pressures
  • For unconventional wells with extended transient flow, consider Duong or SEPD models

References

  1. Ansah, J., Knowles, R.S., and Blasingame, T.A. (1996). A Semi-Analytic (p/z) Rate-Time Relation for the Analysis and Prediction of Gas Well Performance. SPE 35268, SPE Mid-Continent Gas Symposium, Amarillo, Texas.

  2. Currie, S. (2010). User Manual for Rate-Time Analysis Spreadsheet. Texas A&M University.


See Also

An unhandled error has occurred. Reload X