Peng-Robinson Equation of State

Overview

The Peng-Robinson equation of state (PR76) was published in 1976 and quickly became the most widely used cubic EoS in the petroleum industry. It provides improved liquid density predictions compared to the Soave-Redlich-Kwong (SRK) equation while maintaining computational simplicity.


The PR Equation

Pure Component Form

P=RTVmba(T)Vm(Vm+b)+b(Vmb)P = \frac{RT}{V_m - b} - \frac{a(T)}{V_m(V_m + b) + b(V_m - b)}

Where:

  • PP = pressure
  • TT = temperature
  • VmV_m = molar volume
  • RR = universal gas constant

Parameters

Co-volume parameter:

b=0.07780RTcPcb = 0.07780 \frac{RT_c}{P_c}

Attraction parameter at critical temperature:

ac=0.45724R2Tc2Pca_c = 0.45724 \frac{R^2 T_c^2}{P_c}

Temperature-dependent attraction:

a(T)=acα(T)a(T) = a_c \cdot \alpha(T)

Alpha Function (Soave-type)

α(T)=[1+m(1Tr)]2\alpha(T) = \left[1 + m\left(1 - \sqrt{T_r}\right)\right]^2

Where Tr=T/TcT_r = T/T_c is the reduced temperature, and:

m=0.37464+1.54226ω0.26992ω2m = 0.37464 + 1.54226\omega - 0.26992\omega^2

For heavier components (ω>0.49\omega > 0.49), the Graboski-Daubert modification is recommended:

m=0.379642+1.48503ω0.164423ω2+0.016666ω3m = 0.379642 + 1.48503\omega - 0.164423\omega^2 + 0.016666\omega^3


Cubic Form

Rewriting in terms of the compressibility factor Z=PVm/RTZ = PV_m/RT:

Z3(1B)Z2+(A3B22B)Z(ABB2B3)=0Z^3 - (1-B)Z^2 + (A - 3B^2 - 2B)Z - (AB - B^2 - B^3) = 0

Where:

A=aPR2T2,B=bPRTA = \frac{aP}{R^2T^2}, \quad B = \frac{bP}{RT}

This cubic equation has either one or three real roots:

Phase Root Selection
Vapor Largest real root
Liquid Smallest positive real root (must satisfy Z>BZ > B)
Single phase Only one valid root exists

Mixing Rules

Van der Waals One-Fluid Mixing Rules

For mixtures of NN components with mole fractions ziz_i:

Attraction parameter:

amix=ijzizjaija_{mix} = \sum_i \sum_j z_i z_j a_{ij}

aij=aiaj(1kij)a_{ij} = \sqrt{a_i a_j}(1 - k_{ij})

Co-volume parameter:

bmix=izibib_{mix} = \sum_i z_i b_i

Binary Interaction Parameters

The kijk_{ij} values correct for non-ideal mixing. They are symmetric (kij=kjik_{ij} = k_{ji}) and kii=0k_{ii} = 0.

Component Pair Typical kijk_{ij} Range
CH4 - C2H6 0.000 - 0.005
CH4 - C3H8 0.005 - 0.015
CH4 - nC10 0.04 - 0.05
CO2 - CH4 0.10 - 0.13
CO2 - nC4 0.13 - 0.15
N2 - CH4 0.02 - 0.04
N2 - CO2 -0.02
H2S - CH4 0.08
H2S - CO2 0.10

Derived Properties

Fugacity Coefficient

For component ii in a mixture:

lnϕ^i=bibmix(Z1)ln(ZB)A22B(2jzjaijamixbibmix)lnZ+(1+2)BZ+(12)B\ln \hat{\phi}_i = \frac{b_i}{b_{mix}}(Z-1) - \ln(Z-B) - \frac{A}{2\sqrt{2}B}\left(\frac{2\sum_j z_j a_{ij}}{a_{mix}} - \frac{b_i}{b_{mix}}\right)\ln\frac{Z + (1+\sqrt{2})B}{Z + (1-\sqrt{2})B}

Molar Volume

Vm=ZRTPV_m = \frac{ZRT}{P}

Density

ρ=MwVm\rho = \frac{M_w}{V_m}

Where MwM_w is the mixture molecular weight:

Mw=iziMw,iM_w = \sum_i z_i M_{w,i}


Volume Translation

The PR equation systematically underestimates liquid densities by 3-5%. The Peneloux volume translation corrects this:

Vmcorrected=VmEoScV_m^{corrected} = V_m^{EoS} - c

Where cc is a component-specific shift parameter. Volume translation improves density without affecting phase equilibrium calculations (fugacity ratios are unchanged).


Applicability and Limitations

Strengths

  • Best liquid density among two-parameter cubic EoS
  • Accurate vapor pressure predictions for hydrocarbons
  • Well-suited for petroleum reservoir fluids
  • Robust convergence properties

Limitations

Limitation Impact Mitigation
Liquid density bias (-3 to -5%) Underpredicts oil density Apply volume translation
Poor near critical point Large errors at Tr1T_r \approx 1 Use higher-order EoS
Polar compounds Inaccurate for water, alcohols Use specialized models
Heavy components (C20+C_{20+}) Requires good characterization Tune C7+ properties

Valid Ranges

Parameter Practical Range
Temperature 100-800 K
Pressure 1-10,000 psia
Components Hydrocarbons C1-C45, CO2, N2, H2S
Acentric factor 0 - 1.5


References

  1. Peng, D.Y. and Robinson, D.B. (1976). "A New Two-Constant Equation of State." Industrial & Engineering Chemistry Fundamentals, 15(1), 59-64.

  2. Robinson, D.B. and Peng, D.Y. (1978). "The Characterization of the Heptanes and Heavier Fractions for the GPA Peng-Robinson Programs." GPA Research Report RR-28.

  3. Peneloux, A., Rauzy, E., and Freze, R. (1982). "A Consistent Correction for Redlich-Kwong-Soave Volumes." Fluid Phase Equilibria, 8(1), 7-23.

  4. Graboski, M.S. and Daubert, T.E. (1978). "A Modified Soave Equation of State for Phase Equilibrium Calculations." Industrial & Engineering Chemistry Process Design and Development, 17(4), 443-448.

  5. Whitson, C.H. and Brule, M.R. (2000). Phase Behavior. SPE Monograph Vol. 20.

An unhandled error has occurred. Reload X