SCAL Overview - Relative Permeability Correlations

Introduction

Special Core Analysis (SCAL) provides critical relative permeability (kr) data that controls multiphase flow in reservoirs. Relative permeability determines:

  • Oil recovery — waterflood and gas injection efficiency
  • Reservoir simulation — fractional flow and displacement physics
  • Production forecasting — water/gas breakthrough timing
  • Well performance — multiphase IPR curves
  • EOR screening — Process selection and optimization

When laboratory SCAL measurements are unavailable, engineers rely on empirical correlations and analytical models developed from measured datasets.


Correlation Philosophy

When to Use Correlations vs. Laboratory Measurements

Scenario Recommended Approach Reason
Concept/screening studies Use correlations Quick, cost-effective
Preliminary simulation Use correlations Establish base case
Development planning Laboratory SCAL Critical for reserves/economics
EOR design Laboratory SCAL Wettability alteration effects
Missing data points Correlations to interpolate Fill gaps in measured data
Sensitivity analysis Both Understand uncertainty range

Best Practice: Always validate correlations against laboratory data when available. Use correlations to extend measured kr curves beyond tested saturation ranges.


Fundamental Concepts

Relative Permeability Definition

Relative permeability (krk_r) is the ratio of effective permeability to absolute permeability:

krw=kewk,kro=keokk_{rw} = \frac{k_{ew}}{k} \quad , \quad k_{ro} = \frac{k_{eo}}{k}

Where:

  • krwk_{rw}, krok_{ro} = water and oil relative permeabilities (dimensionless, 0 to 1)
  • kewk_{ew}, keok_{eo} = effective permeabilities to water and oil (md)
  • kk = absolute permeability (md)

Critical Saturation Points

      ◄─────────── Mobile Oil ────────────►
┌─────┬────────────────────────────────┬──────┐
│ Swi │         Sw Range              │ Sorw │
└─────┴────────────────────────────────┴──────┘
  │                                       │
  ▼                                       ▼
krw = 0                                 kro = 0
kro = 1.0 (typically)                   krw = krw° (endpoint)
Parameter Symbol Typical Range Physical Meaning
Irreducible water Swi 10-35% Minimum water saturation
Residual oil (waterflood) Sorw 15-45% Trapped oil after waterflood
Residual oil (gas) Sorg 5-30% Trapped oil after gas displacement
Critical gas Sgc 0-10% Minimum gas for continuous phase

Wettability States

The distribution of fluids in pore space depends on wettability (which fluid preferentially wets the rock):

Wettability Water Distribution Oil Distribution Crossover Point krw°
Strongly water-wet Small pores, surface film Large pores, center Sw > 50-60% < 0.07
Water-wet Small pores, corners Large pores Sw ≈ 45-55% 0.07-0.30
Intermediate (Mixed) Patches Patches Sw ≈ 40-60% 0.30-0.50
Oil-wet Large pores Small pores, surface Sw < 40-50% > 0.50

Modified Craig's Rules (Ibrahim-Koederitz 2000) provide quantitative wettability classification.


Correlation Types

1. Analytical Models

Power-law relationships with adjustable exponents.

Corey Model (1954)

krw=krw(SwSwi1SwiSorw)nwk_{rw} = k_{rw}^{\circ} \left( \frac{S_w - S_{wi}}{1 - S_{wi} - S_{orw}} \right)^{n_w}kro=kro(1SwSorw1SwiSorw)nok_{ro} = k_{ro}^{\circ} \left( \frac{1 - S_w - S_{orw}}{1 - S_{wi} - S_{orw}} \right)^{n_o}

Advantages:

  • ✅ Simple (only 4-6 parameters)
  • ✅ Smooth, well-behaved curves
  • ✅ Works for any rock type or wettability
  • ✅ Easy to tune to laboratory data

Limitations:

  • ❌ Cannot capture S-shaped curves
  • ❌ No physical basis for exponents
  • ❌ Single exponent may not fit entire curve

When to use: Quick estimates, sensitivity studies, when tuning parameters to limited lab data.

LET Model (Lomeland et al. 2005)

Three-parameter model with flexible shape:

krw=krwSwLwSwLw+Ew(1Sw)Twk_{rw} = k_{rw}^{\circ} \frac{S_w^{L_w}}{S_w^{L_w} + E_w (1 - S_w)^{T_w}}

Where L, E, T control Lower, Elevation, and Top curvature.

Advantages:

  • ✅ Flexible S-shaped curves
  • ✅ Better fit to lab data than Corey
  • ✅ Can match endpoints and curvature independently

Limitations:

  • ❌ More parameters to determine (6 total)
  • ❌ Less intuitive than Corey
  • ❌ Requires lab data for fitting

When to use: When laboratory data shows S-shaped curves, EOR studies where shape matters.


2. Empirical Correlations

Regression equations fit to large databases of laboratory measurements.

Honarpour et al. (1982)

  • Data basis: 651 kr data sets worldwide
  • Coverage: Sandstone/carbonate × water-wet/intermediate-wet
  • Form: Polynomial equations (Equations A-1 to A-10)

Advantages:

  • ✅ Based on extensive laboratory database
  • ✅ Rock type specific (sand vs. carbonate)
  • ✅ Wettability differentiation
  • ✅ No parameter fitting needed

Limitations:

  • ❌ No oil-wet correlations
  • ❌ Fixed equations (cannot tune)
  • ❌ Limited carbonate data

When to use: Screening studies, when rock type and wettability are known, no lab data available.

📖 Full Documentation: Honarpour Correlations

Ibrahim-Koederitz (2000)

  • Data basis: 416 kr data sets (SPE literature 1950-1998)
  • Coverage: ALL combinations (sand/carb × 4 wettabilities × 4 fluid systems)
  • Form: Linear regression with 3-10 terms per equation

Advantages:

  • ✅ Most comprehensive coverage
  • ✅ Includes oil-wet systems
  • ✅ Gas-oil, gas-water, gas-condensate systems
  • ✅ Modified Craig's wettability rules

Limitations:

  • ❌ Complex equations (many terms)
  • ❌ Cannot tune to local data
  • ❌ Room temperature data only

When to use: When Honarpour doesn't cover your system, oil-wet reservoirs, gas systems.

📖 Full Documentation: Ibrahim-Koederitz Correlations


Selection Matrix

By Rock Type and Wettability (Oil-Water System)

Rock Type Wettability Honarpour Ibrahim-Koederitz Corey LET
Sandstone Strongly WW ✅ A1, A2
Water-wet ✅ A-1, A-3 ✅ A3, A4
Intermediate ✅ A-2, A-3 ✅ A5, A6
Oil-wet ✅ A7, A8
Carbonate Strongly WW ✅ A9, A10
Water-wet ✅ A-6, A-8 ✅ A11, A12
Intermediate ✅ A-7, A-8 ✅ A13, A14
Oil-wet ✅ A15, A16

Legend: WW = Water-wet | ✅ = Available | ❌ = Not available | A1, A-3 = Equation numbers

By Fluid System

Fluid System Honarpour Ibrahim-Koederitz Corey LET
Oil-Water ✅ A-1 to A-8 ✅ A1-A16 (sand/carb × 4 wett)
Gas-Oil ✅ A-4, A-5 (partial) ✅ A17-A20 (sand/carb)
Gas-Water ✅ A21, A22
Gas-Condensate ✅ A23, A24

Correlation Comparison

Prediction Quality

Based on validation against independent laboratory data:

Correlation R² Range Typical Accuracy Best For
Corey 0.85-0.95 ±15-25% Tuned to local data
LET 0.92-0.98 ±10-15% Matching lab curves
Honarpour 0.77-0.95 ±20-30% First estimate, no data
Ibrahim-Koederitz 0.82-0.98 ±15-25% Comprehensive coverage

Note: Actual accuracy depends on how well your reservoir matches the correlation database.

Computational Complexity

Model Parameters Equation Complexity Tuning Difficulty
Corey 4-6 Low (power laws) Easy
LET 6 Medium Moderate
Honarpour 0 High (9+ terms) Cannot tune
Ibrahim-Koederitz 0 Very high (up to 10 terms) Cannot tune

Step 1: Classify Your Reservoir

Loading diagram...

Step 2: Select Initial Correlation

Loading diagram...

Step 3: Apply Correlation

  1. Determine endpoints:

    • Swi (from log analysis or default 20%)
    • Sorw (from waterflood data or default 25%)
    • krw° (typically 0.05-0.30)
    • kro° (typically 0.8-1.0)
  2. Calculate kr curves:

    • Use selected correlation equations
    • Compute kr at each saturation step (ΔSw = 0.05)
  3. Validate results:

    • Check crossover point matches wettability
    • Verify endpoint values are reasonable
    • Compare with regional data if available

Step 4: Sensitivity Analysis

Always run cases with ±20% variation in:

  • Sorw (changes EUR significantly)
  • krw° (affects water breakthrough)
  • Corey exponents nw, no (if using Corey)

Typical Correlation Parameters

Corey Exponents by Rock Type and Wettability

Rock Type Wettability nw no Source
Sandstone Water-wet 2.5-4.5 1.5-2.5 Industry average
Intermediate 2.0-3.5 2.0-3.0
Oil-wet 1.5-2.5 3.0-5.0
Carbonate Water-wet 3.0-6.0 2.0-4.0 More heterogeneous
Intermediate 2.5-4.0 2.5-4.0
Oil-wet 2.0-3.0 4.0-7.0

Higher exponentSteeper curveLower average krReduced mobility

Endpoint Relative Permeability

System krw° kro° (oil-water) krg° (gas-oil)
Water-wet sandstone 0.05-0.20 0.85-1.00 0.70-0.90
Water-wet carbonate 0.02-0.10 0.50-0.80 0.50-0.80
Intermediate-wet 0.20-0.40 0.60-0.90 0.60-0.85
Oil-wet 0.40-0.70 0.50-0.80 0.60-0.85

Available Functions by Correlation

Corey Model Functions

Function Description Parameters
KrwCorey Corey water kr Sw, Swi, Sorw, nw, krw°
KrowCorey Corey oil kr So, Swi, Sorw, no, kro°

📖 Full Documentation: Corey and LET Models


Honarpour Functions

Sandstone

Function Wettability Phase
PO.SCAL.Honarpour.Sand.WW.Krow Water-wet Oil
PO.SCAL.Honarpour.Sand.WW.Krw Water-wet Water
PO.SCAL.Honarpour.Sand.IW.Krow Intermediate Oil
PO.SCAL.Honarpour.Sand.IW.Krw Intermediate Water

Carbonate

Function Wettability Phase
PO.SCAL.Honarpour.Carb.WW.Krow Water-wet Oil
PO.SCAL.Honarpour.Carb.WW.Krw Water-wet Water
PO.SCAL.Honarpour.Carb.IW.Krow Intermediate Oil
PO.SCAL.Honarpour.Carb.IW.Krw Intermediate Water

📖 Full Documentation: Honarpour Correlations


Ibrahim-Koederitz Functions (24 total)

Oil-Water: Sandstone (8 functions)

Function Wettability Equation
PO.SCAL.IK.Sand.SWW.Krow Strongly WW A1
PO.SCAL.IK.Sand.SWW.Krw Strongly WW A2
PO.SCAL.IK.Sand.WW.Krow Water-wet A3
PO.SCAL.IK.Sand.WW.Krw Water-wet A4
PO.SCAL.IK.Sand.IW.Krow Intermediate A5
PO.SCAL.IK.Sand.IW.Krw Intermediate A6
PO.SCAL.IK.Sand.OW.Krow Oil-wet A7
PO.SCAL.IK.Sand.OW.Krw Oil-wet A8

Oil-Water: Carbonate (8 functions)

Function Wettability Equation
PO.SCAL.IK.Carb.SWW.Krow Strongly WW A9
PO.SCAL.IK.Carb.SWW.Krw Strongly WW A10
PO.SCAL.IK.Carb.WW.Krow Water-wet A11
PO.SCAL.IK.Carb.WW.Krw Water-wet A12
PO.SCAL.IK.Carb.IW.Krow Intermediate A13
PO.SCAL.IK.Carb.IW.Krw Intermediate A14
PO.SCAL.IK.Carb.OW.Krow Oil-wet A15
PO.SCAL.IK.Carb.OW.Krw Oil-wet A16

Gas-Oil Systems (4 functions)

Function Rock Type Equation
PO.SCAL.IK.Sand.GasOil.Krog Sandstone A17
PO.SCAL.IK.Sand.GasOil.Krg Sandstone A18
PO.SCAL.IK.Carb.GasOil.Krog Carbonate A19
PO.SCAL.IK.Carb.GasOil.Krg Carbonate A20

Gas-Water and Gas-Condensate (4 functions)

Function System Equation
PO.SCAL.IK.GasWat.Krgw Gas-water A21
PO.SCAL.IK.GasWat.Krw Gas-water A22
PO.SCAL.IK.GasCond.Krcg Gas-condensate A23
PO.SCAL.IK.GasCond.Krg Gas-condensate A24

📖 Full Documentation: Ibrahim-Koederitz Correlations



References

  1. Corey, A.T. (1954). "The Interrelation Between Gas and Oil Relative Permeabilities." Producers Monthly, 19(1), pp. 38-41.

  2. Honarpour, M., Koederitz, L.F., and Harvey, A.H. (1982). "Empirical Equations for Estimating Two-Phase Relative Permeability in Consolidated Rock." Journal of Petroleum Technology, 34(12), pp. 2905-2908. SPE-9966-PA.

  3. Ibrahim, M.N.M. and Koederitz, L.F. (2000). "Two-Phase Relative Permeability Prediction Using a Linear Regression Model." SPE-65631-MS, presented at SPE Eastern Regional Meeting, Morgantown, WV.

  4. Lomeland, F., Ebeltoft, E., and Thomas, W.H. (2005). "A New Versatile Relative Permeability Correlation." SCA2005-32, International Symposium of the Society of Core Analysts, Toronto, Canada.

  5. Craig, F.F. Jr. (1971). The Reservoir Engineering Aspects of Waterflooding. Monograph Series, SPE, Richardson, TX. Vol. 3.

  6. Ahmed, T. (2019). Reservoir Engineering Handbook, 5th Edition. Cambridge, MA: Gulf Professional Publishing. Chapter 6: Relative Permeability Concepts.

  7. Honarpour, M., Koederitz, L.F., and Harvey, A.H. (1986). Relative Permeability of Petroleum Reservoirs. Boca Raton, FL: CRC Press.

An unhandled error has occurred. Reload X