Horizontal Well Productivity

Overview

Horizontal wells offer significant advantages over vertical wells:

  • Larger contact area with reservoir
  • Lower drawdown for same production rate
  • Delayed water/gas breakthrough
  • Better drainage of thin, layered reservoirs
  • Access to naturally fractured reservoirs

Horizontal well productivity is governed by:

  1. Horizontal permeability (kh) — Flow perpendicular to wellbore
  2. Vertical permeability (kv) — Flow from above/below wellbore
  3. Anisotropy ratio (kv/kh) — Critical parameter
  4. Well length (L) — Longer = higher productivity
  5. Reservoir thickness (h) — Thin reservoirs benefit most
  6. Wellbore position (zw) — Vertical placement in pay zone

Productivity Index Correlations

Five major correlations are implemented, each with specific advantages:

Correlation Year Best For Key Feature
Joshi 1988 General purpose Anisotropic, any well position
Borisov 1984 Isotropic reservoirs Simplest, kv = kh only
Giger-Reiss-Jourdan (GRJ) 1985 Anisotropic, long wells Elliptical drainage
Renard-Dupuy (RD) 1991 Box-shaped drainage Rectangular reservoirs
Babu-Odeh (BO) 1989 Any well position Most general, complex

Joshi Method (1988)

Productivity Index

Jh=khh141.2Bμ[ln(a+a2(L/2)2L/2)+hLln(h2πrwkh/kv)(kh/kv1+kh/kv)+s]J_h = \frac{k_h h}{141.2 B \mu \left[\ln\left(\frac{a + \sqrt{a^2 - (L/2)^2}}{L/2}\right) + \frac{h}{L} \ln\left(\frac{h}{2\pi r_w \sqrt{k_h/k_v}}\right)\left(\frac{\sqrt{k_h/k_v}}{1 + \sqrt{k_h/k_v}}\right) + s\right]}

Where:

a=L21+(2rehL)4L2[0.5+0.25+(rehL)4]a = \frac{L}{2} \sqrt{1 + \left(\frac{2r_{eh}}{L}\right)^4} \approx \frac{L}{2}\left[0.5 + \sqrt{0.25 + \left(\frac{r_{eh}}{L}\right)^4}\right]

Parameters:

  • LL = horizontal well length, ft
  • hh = reservoir thickness, ft
  • rehr_{eh} = drainage radius in horizontal plane, ft
  • rwr_w = wellbore radius, ft
  • khk_h = horizontal permeability, md
  • kvk_v = vertical permeability, md
  • ss = skin factor

Physical interpretation:

  • First term: horizontal drainage (major contribution)
  • Second term: vertical drainage correction
  • Accounts for anisotropy (kv ≠ kh)

Drainage Area

Joshi provides two methods:

Method 1 (Ellipse):

A=πrehrevA = \pi r_{eh} r_{ev}

Where:

rev=rehkv/khr_{ev} = r_{eh} \sqrt{k_v / k_h}

Method 2 (Rectangle with rounded ends):

A=L×W+πW24A = L \times W + \frac{\pi W^2}{4}

Where W = drainage width.

Typical values:

  • L = 2000 ft, reh = 1000 ft → A ≈ 10-15 acres

Borisov Method (1984)

Productivity Index (Isotropic: kv = kh)

Jh=kh141.2Bμ[ln(4reL)+s]J_h = \frac{k h}{141.2 B \mu \left[\ln\left(\frac{4r_e}{L}\right) + s\right]}

Where:

  • Assumes isotropic reservoir (kv = kh = k)
  • Simplest correlation
  • re = equivalent circular drainage radius

When to use: Sandstone with uniform permeability in all directions.

Limitation: Cannot handle anisotropy (most reservoirs are anisotropic!).


Giger-Reiss-Jourdan (GRJ) Method (1985)

Productivity Index

Jh=2πkhh141.2Bμ[ln(Lrw)+2πkhβL(L2a)+s]J_h = \frac{2\pi k_h h}{141.2 B \mu \left[\ln\left(\frac{L}{r_w}\right) + \frac{2\pi k_h}{\beta L}\left(\frac{L}{2a}\right) + s\right]}

Where:

β=2πkhkv\beta = 2\pi \sqrt{k_h k_v}a=major axis of elliptical drainagea = \text{major axis of elliptical drainage}

Features:

  • Elliptical drainage assumption
  • Accounts for anisotropy via β\beta
  • Good for long horizontal wells (L > 1000 ft)

Renard-Dupuy (RD) Method (1991)

Productivity Index

Jh=khh141.2Bμ[ln((xexw)rw)+s]J_h = \frac{k_h h}{141.2 B \mu \left[\ln\left(\frac{(x_e - x_w)}{r_w'}\right) + s\right]}

Where:

rw=rwkhkvr_w' = r_w \sqrt{\frac{k_h}{k_v}}

Features:

  • Rectangular drainage (box-shaped)
  • xe = horizontal extent of drainage
  • xw = well position from edge
  • Good for wells in elongated rectangular reservoirs

Babu-Odeh (BO) Method (1989)

Full General Form (BO)

Most complex but most accurate for any well position in reservoir:

Jh=2πkhh141.2Bμ[ln(IyIx)+hLln(hβ2π)+F+s]J_h = \frac{2\pi k_h h}{141.2 B \mu \left[\ln\left(\frac{I_y}{I_x}\right) + \frac{h}{L}\ln\left(\frac{h\beta}{2\pi}\right) + F + s\right]}

Where IxI_x, IyI_y are shape factors depending on:

  • Well location (xw, yw, zw) relative to drainage boundaries
  • Anisotropy ratio (kv/kh)
  • Drainage shape (xe, ye, h)

Function: ProdIndexHorWellBO — Full positioning

Simplified Form (BO2 — Centered Well)

For well centered in reservoir (xw = xe/2, yw = ye/2):

Jh=khh141.2Bμ[C1+C2hL+C3ln(L)+s]J_h = \frac{k_h h}{141.2 B \mu \left[C_1 + C_2 \frac{h}{L} + C_3 \ln(L) + s\right]}

Where C₁, C₂, C₃ are correlation constants.

Function: ProdIndexHorWellBO2 — Simplified for centered wells

When to use:

  • BO (full) — Well near edges or boundaries
  • BO2 — Well centered, simpler calculation

Comparison of Methods

Prediction Accuracy (Relative to Numerical Simulation)

Method Centered Well Near Boundary Anisotropic
Joshi Good (±15%) Good Excellent
Borisov Fair (±25%) Poor Cannot handle
GRJ Good (±10%) Fair Good
RD Good (±15%) Good Good
Babu-Odeh Excellent (±5%) Excellent Excellent

Recommendation:

  • General use: Joshi (widely validated, simple)
  • Best accuracy: Babu-Odeh (if positioning data available)
  • Quick estimate: Borisov (isotropic only)

Effect of Anisotropy

For typical carbonate (kv/kh = 0.1):

Well Length Joshi J Borisov J Error if Ignore Anisotropy
1000 ft 25 STB/d/psi 45 STB/d/psi +80% overprediction!
2000 ft 45 STB/d/psi 75 STB/d/psi +67% overprediction!

Conclusion: Must account for anisotropy in carbonates, shales, and layered reservoirs.


Drainage Area Estimation

DrainageAreaHorWell1 (Joshi Ellipse)

A=πabA = \pi a b

Where:

  • aa = major axis (calculated from Joshi's equations)
  • b=akv/khb = a \sqrt{k_v/k_h} = minor axis

DrainageAreaHorWell2 (Joshi Rectangle)

A=L×W+πW24A = L \times W + \frac{\pi W^2}{4}

Where W is estimated drainage width.

Use case: Well spacing design, interference analysis.



References

  1. Joshi, S.D. (1988). "Augmentation of Well Productivity with Slant and Horizontal Wells." Journal of Petroleum Technology, 40(6), pp. 729-739. SPE-15375-PA.

  2. Borisov, J.P. (1984). Oil Production Using Horizontal and Multiple Deviation Wells. Moscow: Nedra Publishing (translated by J.Strauss, R&D Library Translation).

  3. Giger, F.M., Reiss, L.H., and Jourdan, A.P. (1984). "The Reservoir Engineering Aspects of Horizontal Drilling." SPE-13024-MS, presented at SPE Annual Technical Conference, Houston, TX, September 16-19.

  4. Renard, G. and Dupuy, J.M. (1991). "Formation Damage Effects on Horizontal-Well Flow Efficiency." Journal of Petroleum Technology, 43(7), pp. 786-869. SPE-19414-PA.

  5. Babu, D.K. and Odeh, A.S. (1989). "Productivity of a Horizontal Well." SPE Reservoir Engineering, 4(4), pp. 417-421. SPE-18298-PA.

  6. Economides, M.J., Brand, C.W., and Frick, T.P. (1996). "Well Configurations in Anisotropic Reservoirs." SPE Formation Evaluation, 11(4), pp. 257-262. SPE-27980-PA.

  7. Joshi, S.D. (1991). Horizontal Well Technology. Tulsa, OK: PennWell Publishing Company.

An unhandled error has occurred. Reload X