Single-Phase Pipe Flow

Introduction

Single-phase pipe flow describes the movement of a single fluid (liquid or gas) through pipelines. This is the foundation for:

  • Surface flowlines — horizontal or near-horizontal transport
  • Injection tubing — water or gas injection wells
  • Single-phase risers — gas-only or water-only risers
  • Process piping — facilities and plant pipelines

The pressure drop in single-phase flow has two components:

  1. Frictional losses — energy dissipated due to fluid viscosity and pipe wall roughness
  2. Elevation changes — potential energy changes due to vertical pipe segments

Fundamental Equations

Total Pressure Drop

ΔPtotal=ΔPfriction+ΔPelevation\Delta P_{total} = \Delta P_{friction} + \Delta P_{elevation}

For producers (flow upward), both terms are positive (pressure decreases from bottom to top).

For injectors (flow downward), friction is positive but elevation is negative (hydrostatic head assists flow).


Reynolds Number

The Reynolds number (NReN_{Re}) is a dimensionless ratio of inertial to viscous forces:

NRe=ρvdμN_{Re} = \frac{\rho \cdot v \cdot d}{\mu}

It determines the flow regime:

Reynolds Number Flow Regime Characteristics
NRe<2100N_{Re} < 2100 Laminar Smooth, orderly flow
2100<NRe<40002100 < N_{Re} < 4000 Transition Unstable, intermittent turbulence
NRe>4000N_{Re} > 4000 Turbulent Chaotic, fully mixed flow

Liquid Flow (Incompressible)

For liquid (incompressible) flow:

NRe=1.48QLρLdμLN_{Re} = \frac{1.48 \cdot Q_L \cdot \rho_L}{d \cdot \mu_L}

Parameter Symbol Units
Liquid flow rate QLQ_L bbl/d
Liquid density ρL\rho_L lb/ft³
Pipe inner diameter dd in
Liquid viscosity μL\mu_L cP

Excel Function: ReynoldsNumberLiquid

=ReynoldsNumberLiquid(Ql, Rho_l, pipeID, Ul)

Gas Flow (Compressible)

For gas (compressible) flow:

NRe=20.09QgγgdμgN_{Re} = \frac{20.09 \cdot Q_g \cdot \gamma_g}{d \cdot \mu_g}

Parameter Symbol Units
Gas flow rate QgQ_g mscf/d
Gas specific gravity γg\gamma_g dimensionless (air = 1.0)
Pipe inner diameter dd in
Gas viscosity μg\mu_g cP

Excel Function: ReynoldsNumberGas

=ReynoldsNumberGas(Qg, SGgas, pipeID, Ug)

Friction Factor

The Fanning friction factor (ff) relates wall shear stress to the fluid's kinetic energy.

Laminar Flow ($N_

For laminar flow, the friction factor is independent of pipe roughness:

f=16NRef = \frac{16}{N_{Re}}

Turbulent Flow ($N_

For turbulent flow, the Chen equation (1979) provides an explicit approximation to the implicit Colebrook-White equation:

1f=4log10[ε/d3.70655.0452NRelog10((ε/d)1.10982.8257+(7.149NRe)0.8981)]\frac{1}{\sqrt{f}} = -4 \log_{10}\left[\frac{\varepsilon/d}{3.7065} - \frac{5.0452}{N_{Re}} \log_{10}\left(\frac{(\varepsilon/d)^{1.1098}}{2.8257} + \left(\frac{7.149}{N_{Re}}\right)^{0.8981}\right)\right]

Where:

  • ε/d\varepsilon/d = relative pipe roughness (dimensionless)

Pipe Roughness Values

Pipe Material Absolute Roughness ε\varepsilon (ft) Typical ε/d\varepsilon/d
Drawn tubing 0.000005 0.00001 - 0.0001
Commercial steel 0.00015 0.0001 - 0.001
Galvanized iron 0.0005 0.0005 - 0.002
Cast iron 0.00085 0.001 - 0.005
Concrete 0.001 - 0.01 0.002 - 0.02
Riveted steel 0.003 - 0.03 0.005 - 0.05

Note: Relative roughness ε/d\varepsilon/d = (absolute roughness) / (pipe inner diameter)


Frictional Pressure Drop

Fanning Equation

The Fanning equation calculates frictional pressure drop for incompressible flow:

ΔPf=2fρv2Lgcd\Delta P_f = \frac{2 \cdot f \cdot \rho \cdot v^2 \cdot L}{g_c \cdot d}

Where:

  • ff = Fanning friction factor
  • ρ\rho = fluid density, lb/ft³
  • vv = flow velocity, ft/s
  • LL = pipe length, ft
  • dd = pipe inner diameter, ft
  • gcg_c = gravitational constant = 32.174 (lbm·ft)/(lbf·s²)

The result is in psi when proper unit conversions are applied.

Excel Function: FrictionPressureDropLiquid

=FrictionPressureDropLiquid(Ql, Ul, Rho_l, pipeID, pipeRoughness, pipeLength)
Parameter Description Units
Ql Liquid rate bbl/d
Ul Liquid viscosity cP
Rho_l Liquid density lb/ft³
pipeID Pipe inner diameter in
pipeRoughness Relative roughness dimensionless
pipeLength Pipe length ft

Elevation Pressure Drop

Potential Energy Change

For inclined or vertical pipes, the elevation pressure drop accounts for gravitational potential energy:

ΔPelev=ρLsin(θ)144\Delta P_{elev} = \frac{\rho \cdot L \cdot \sin(\theta)}{144}

Parameter Symbol Units
Fluid density ρ\rho lb/ft³
Pipe length LL ft
Pipe angle from horizontal θ\theta degrees

Sign Convention:

  • θ=0°\theta = 0° — Horizontal flow (no elevation change)
  • θ=+90°\theta = +90° — Vertical upward (producer)
  • θ=90°\theta = -90° — Vertical downward (injector)

Excel Function: PotentialEnergyPressureDropLiquid

=PotentialEnergyPressureDropLiquid(Rho_l, pipeLength, pipeAngle)

Complete Pressure Calculations

Liquid Flow

Inlet Pressure from Outlet:

Pin=Pout+ΔPfriction+ΔPelevationP_{in} = P_{out} + \Delta P_{friction} + \Delta P_{elevation}

Excel Function: InletPipePressureLiquid

=InletPipePressureLiquid(P_out, Ql, Ul, Rho_l, pipeID, pipeRoughness, pipeLength, pipeAngle)

Outlet Pressure from Inlet:

Pout=PinΔPfrictionΔPelevationP_{out} = P_{in} - \Delta P_{friction} - \Delta P_{elevation}

Excel Function: OutletPipePressureLiquid

=OutletPipePressureLiquid(P_in, Ql, Ul, Rho_l, pipeID, pipeRoughness, pipeLength, pipeAngle)

Gas Flow

Gas flow requires special treatment because gas is compressible — density varies with pressure along the pipe.

Horizontal Gas Flow (θ=0\theta = 0):

P12=P22+1.007×104γgfZˉTˉQg2Ld5P_1^2 = P_2^2 + \frac{1.007 \times 10^{-4} \cdot \gamma_g \cdot f \cdot \bar{Z} \cdot \bar{T} \cdot Q_g^2 \cdot L}{d^5}

Inclined Gas Flow (θ0\theta \ne 0):

P12=esP222.685×103(1es)f(ZˉTˉQg)2sinθd5P_1^2 = e^{-s} \cdot P_2^2 - 2.685 \times 10^{-3} \cdot (1 - e^{-s}) \cdot \frac{f \cdot (\bar{Z} \cdot \bar{T} \cdot Q_g)^2}{\sin\theta \cdot d^5}

Where the elevation parameter:

s=0.0375γgsinθLZˉTˉs = -\frac{0.0375 \cdot \gamma_g \cdot \sin\theta \cdot L}{\bar{Z} \cdot \bar{T}}

Parameter Symbol Units
Inlet pressure P1P_1 psia
Outlet pressure P2P_2 psia
Gas specific gravity γg\gamma_g dimensionless
Fanning friction factor ff dimensionless
Mean Z-factor Zˉ\bar{Z} dimensionless
Mean temperature Tˉ\bar{T} °R
Gas flow rate QgQ_g mscf/d
Pipe length LL ft
Pipe diameter dd in

Excel Function (Inlet from Outlet): InletPipePressureGas

=InletPipePressureGas(Qg, P_out, pipeLength, pipeID, pipeAngle, pipeRoughness, zFactor, T, SGgas, Ug)

Excel Function (Outlet from Inlet): OutletPipePressureGas

=OutletPipePressureGas(Qg, P_in, pipeLength, pipeID, pipeAngle, pipeRoughness, zFactor, T, SGgas, Ug)

Input Validation

Parameter Valid Range Typical Values
Flow rate (liquid) ≥ 0 bbl/d 100 - 50,000
Flow rate (gas) ≥ 0 mscf/d 100 - 100,000
Pipe ID > 0 in 2 - 24
Pipe length ≥ 0 ft 100 - 50,000
Pipe angle -90° to +90° 0° (horizontal)
Roughness > 0 0.0001 - 0.01
Density > 0 lb/ft³ 40 - 70 (oil), 62 (water)
Viscosity > 0 cP 0.5 - 100 (liquid), 0.01 - 0.03 (gas)
Z-factor > 0 0.7 - 1.0
Gas SG > 0 0.55 - 1.2

Limitations

Single-Phase Assumptions

  • No phase change — liquid stays liquid, gas stays gas
  • Newtonian fluid — viscosity independent of shear rate
  • Steady-state flow — constant flow rate and conditions
  • Isothermal — temperature constant along pipe (or use average)

When to Use Multiphase Correlations

  • Oil and gas flow together
  • Condensate drops out of gas
  • Water cuts present
  • Two-phase flow expected

See PipeFlow Overview for multiphase correlation selection.



References

  1. Chen, N.H. (1979). "An Explicit Equation for Friction Factor in Pipe." Industrial & Engineering Chemistry Fundamentals, Vol. 18, No. 3, pp. 296-297.

  2. Economides, M.J., Hill, A.D., Ehlig-Economides, C., and Zhu, D. (2013). Petroleum Production Systems, 2nd Edition. Prentice Hall.

  3. Brill, J.P. and Mukherjee, H. (1999). Multiphase Flow in Wells. SPE Monograph Vol. 17.

  4. Brown, K.E. (1984). The Technology of Artificial Lift Methods, Vol. 1. PennWell Books.

  5. Moody, L.F. (1944). "Friction Factors for Pipe Flow." Transactions of the ASME, Vol. 66, pp. 671-684.

An unhandled error has occurred. Reload X