Bubble Point Pressure Correlations

Overview

The bubble point pressure (PbP_b) is the pressure at which the first bubble of gas evolves from an oil at reservoir temperature. This thermodynamic property is fundamental to reservoir characterization:

  • Phase behavior prediction — distinguishes undersaturated from saturated flow conditions
  • Material balance calculations — determines oil compressibility above versus below PbP_b
  • Production forecasting — gas evolution affects mobility ratios and recovery
  • Facilities design — separator sizing requires saturation pressure knowledge

When laboratory PVT data are unavailable, engineers rely on empirical correlations derived from regression analysis of measured datasets.

Physical Significance

At the bubble point:

  • Reservoir oil transitions from a single-phase liquid to a two-phase gas-liquid system
  • Solution gas begins evolving from the oil phase
  • Oil compressibility changes discontinuously
  • Formation volume factor reaches its maximum value (BobB_{ob})

The bubble point pressure depends on:

Property Effect on PbP_b
Solution gas-oil ratio (RsR_s) Higher RsR_s → higher PbP_b
Gas specific gravity (γg\gamma_g) Higher γg\gamma_g → higher PbP_b
Oil API gravity (γAPI\gamma_{API}) Higher API → lower PbP_b
Temperature (TT) Higher TT → higher PbP_b

Correlation Equations

All correlations covered here solve the inverse problem: given measured RsR_s, γg\gamma_g, γAPI\gamma_{API}, and TT, calculate PbP_b.

Standing (1947)

The earliest widely-used correlation, developed from 105 California crude oil samples:

Pb=18.2[(Rsγg)0.83100.00091T100.0125γAPI1.4]P_b = 18.2 \left[ \left( \frac{R_s}{\gamma_g} \right)^{0.83} \frac{10^{0.00091 \, T}}{10^{0.0125 \, \gamma_{API}}} - 1.4 \right]

Where:

  • PbP_b = bubble point pressure, psia
  • RsR_s = solution gas-oil ratio, scf/STB
  • γg\gamma_g = gas specific gravity (air = 1.0)
  • γAPI\gamma_{API} = oil API gravity, °API
  • TT = temperature, °F

Applicability Range:

Parameter Min Max
γg\gamma_g 0.59 0.95
γAPI\gamma_{API} 16.5 63.8
RsR_s 20 1,425 scf/STB
TT 100 258 °F
PbP_b 130 7,000 psia

Vasquez and Beggs (1980)

Developed from over 5,000 data points with API gravity-dependent coefficients:

Pb=[RsC1γgexp(C3γAPIT+459.67)]1/C2P_b = \left[ \frac{R_s}{C_1 \, \gamma_g \, \exp \left( \frac{C_3 \, \gamma_{API}}{T + 459.67} \right)} \right]^{1/C_2}

Coefficients:

API Range C1C_1 C2C_2 C3C_3
γAPI30\gamma_{API} \le 30 0.0362 1.0937 25.724
γAPI>30\gamma_{API} > 30 0.0178 1.187 23.931

Where:

  • TT = temperature, °F (converted to °R with +459.67)

Applicability Range:

Parameter Min Max
γg\gamma_g 0.511 1.351
γAPI\gamma_{API} 15.3 59.5
RsR_s 10 5,000 scf/STB
TT 60 300 °F
PbP_b 200 6,000 psia

Glasø (1980)

Developed from 45 North Sea crude oil samples using a correlation factor PbP_b^*:

Pb=(Rsγg)0.816T0.172γAPI0.989P_b^* = \left( \frac{R_s}{\gamma_g} \right)^{0.816} T^{0.172} \, \gamma_{API}^{-0.989}Pb=101.7669+1.7447logPb0.30218(logPb)2P_b = 10^{\, 1.7669 + 1.7447 \log P_b^* - 0.30218 (\log P_b^*)^2}

Applicability Range:

Parameter Min Max
γg\gamma_g 0.65 1.276
γAPI\gamma_{API} 22.3 48.1
RsR_s 90 2,637 scf/STB
TT 80 280 °F
PbP_b 165 7,142 psia

Al-Marhoun (1988)

Developed from 160 Middle East crude oil samples:

Pb=5.38088×103Rs0.715082γg1.87784γo3.1437(T+460)1.32657P_b = 5.38088 \times 10^{-3} \, R_s^{0.715082} \, \gamma_g^{-1.87784} \, \gamma_o^{3.1437} \, (T + 460)^{1.32657}

Where:

  • γo\gamma_o = oil specific gravity = 141.5131.5+γAPI\frac{141.5}{131.5 + \gamma_{API}}
  • TT = temperature, °F (converted to °R with +460)

Applicability Range:

Parameter Min Max
γg\gamma_g 0.752 1.367
γAPI\gamma_{API} 19.4 44.6
RsR_s 26 1,602 scf/STB
TT 74 240 °F
PbP_b 130 3,573 psia

Petrosky and Farshad (1993)

Developed from Gulf of Mexico crude oil samples:

X=7.916×104γAPI1.54104.561×105T1.3911X = 7.916 \times 10^{-4} \, \gamma_{API}^{1.5410} - 4.561 \times 10^{-5} \, T^{1.3911}Pb=112.727Rs0.577421γg0.843910X1391.051P_b = \frac{112.727 \, R_s^{0.577421}}{\gamma_g^{0.8439} \, 10^X} - 1391.051

Applicability Range:

Parameter Min Max
γg\gamma_g 0.752 1.367
γAPI\gamma_{API} 19.4 44.6
RsR_s 26 1,602 scf/STB
TT 74 240 °F
PbP_b 130 3,573 psia

Dokla and Osman (1992)

Developed from UAE crude oil samples:

Pb=8363.86Rs0.724047γg1.01049γo0.107991(T+460)0.952584P_b = 8363.86 \, R_s^{0.724047} \, \gamma_g^{-1.01049} \, \gamma_o^{0.107991} \, (T + 460)^{-0.952584}

Where:

  • γo\gamma_o = oil specific gravity = 141.5131.5+γAPI\frac{141.5}{131.5 + \gamma_{API}}

Applicability Range:

Parameter Min Max
γg\gamma_g 0.752 1.367
γAPI\gamma_{API} 19.4 44.6
RsR_s 26 1,602 scf/STB
TT 74 240 °F
PbP_b 130 3,573 psia

Dindoruk and Christman (2004)

Developed from Gulf of Mexico deepwater crude oils using complex regression:

A=a1Ta2+a3γAPIa4(a5+2Rsa6γga7)2A = \frac{a_1 \, T^{a_2} + a_3 \, \gamma_{API}^{a_4}}{\left( a_5 + \frac{2 \, R_s^{a_6}}{\gamma_g^{a_7}} \right)^2}Pb=a8[Rsa9γga1010A+a11]P_b = a_8 \left[ \frac{R_s^{a_9}}{\gamma_g^{a_{10}}} \cdot 10^A + a_{11} \right]

Coefficients:

Coefficient Value
a1a_1 1.42828×10101.42828 \times 10^{-10}
a2a_2 2.844591797
a3a_3 6.74896×104-6.74896 \times 10^{-4}
a4a_4 1.225226436
a5a_5 0.033383304
a6a_6 −0.272945957
a7a_7 −0.084226069
a8a_8 1.869979257
a9a_9 1.221486524
a10a_{10} 1.370508349
a11a_{11} 0.011688308

Applicability Range:

Parameter Min Max
γg\gamma_g 0.6017 1.0270
γAPI\gamma_{API} 14.7 40.0
RsR_s 133 3,050 scf/STB
TT 117 276 °F
PbP_b 926 12,230 psia

Correlation Selection Guidelines

By Region

Oil Source Recommended Correlation
California Standing (1947)
North Sea Glasø (1980)
Middle East Al-Marhoun (1988)
Gulf of Mexico (shelf) Vasquez-Beggs (1980) or Petrosky-Farshad (1993)
Deepwater GOM Dindoruk-Christman (2004)
UAE Dokla-Osman (1992)

By Fluid Properties

Fluid Characteristic Recommended Correlation
Low GOR (Rs<200R_s < 200) Standing, Al-Marhoun
High GOR (Rs>1000R_s > 1000) Dindoruk-Christman, Vasquez-Beggs
Light oil (γAPI>40\gamma_{API} > 40) Standing, Glasø
Heavy/Medium oil (γAPI<30\gamma_{API} < 30) Vasquez-Beggs, Al-Marhoun
High-pressure reservoir Dindoruk-Christman

Statistical Performance

Based on the Brazilian Campos Basin study comparing 20 correlations:

Correlation AARE (%) Best For
Vasquez-Beggs 7-12 General-purpose
Al-Marhoun 8-15 Middle East analogs
Standing 10-18 Light California-type oils
Glasø 12-20 North Sea analogs

Note: Statistical performance varies significantly by dataset. Regional correlations typically outperform global correlations when applied to their development region.



References

  1. Standing, M.B. (1947). "A Pressure-Volume-Temperature Correlation for Mixtures of California Oils and Gases." Drilling and Production Practice, API, pp. 275-287.

  2. Vazquez, M. and Beggs, H.D. (1980). "Correlations for Fluid Physical Property Prediction." Journal of Petroleum Technology, 32(6), pp. 968-970.

  3. Glasø, Ø. (1980). "Generalized Pressure-Volume-Temperature Correlations." Journal of Petroleum Technology, 32(5), pp. 785-795.

  4. Al-Marhoun, M.A. (1988). "PVT Correlations for Middle East Crude Oils." Journal of Petroleum Technology, 40(5), pp. 650-666.

  5. Petrosky, G.E. and Farshad, F.F. (1993). "Pressure-Volume-Temperature Correlations for Gulf of Mexico Crude Oils." SPE Reservoir Engineering, 8(4), pp. 416-420.

  6. Dokla, M.E. and Osman, M.E. (1992). "Correlation of PVT Properties for UAE Crudes." SPE Formation Evaluation, 7(1), pp. 41-46.

  7. Dindoruk, B. and Christman, P.G. (2004). "PVT Properties and Viscosity Correlations for Gulf of Mexico Oils." SPE Reservoir Evaluation & Engineering, 7(6), pp. 427-437.

  8. Santos, R.G., Silva, J.A., Mehl, A., and Experiment, P.E. (2019). "Comparison of PVT Correlations with PVT Laboratory Data from the Brazilian Campos Basin." Brazilian Journal of Petroleum and Gas, 13(3), pp. 129-157.

An unhandled error has occurred. Reload X