Category
Empirical Correlations
18 functions
PO.VFP.BeggsBrill.dPdL
Calculates pressure gradient for multiphase pipe flow using Beggs and Brill (1973) correlation, [psi/ft]. Can be applied for any wellbore inclination and flow direction.
PO.VFP.BeggsBrill.Pin
Calculates inlet pipe pressure using Beggs and Brill (1973), [psi]. For any wellbore inclination. Gas properties (ρg, μg, Bg) use DAK (Z-factor) and LGE (viscosity).
PO.VFP.BeggsBrill.Pout
Calculates outlet pipe pressure using Beggs and Brill (1973), [psi]. For any wellbore inclination. Gas properties (ρg, μg, Bg) use DAK (Z-factor) and LGE (viscosity).
PO.VFP.DunsRos.dPdL
Calculates pressure gradient using Duns and Ros (1963) correlation, [psi/ft]. For vertical gas wells with liquid, high GOR wells.
PO.VFP.DunsRos.Pin
Calculates inlet pipe pressure using Duns and Ros (1963), [psi]. Vertical gas wells. Gas properties (ρg, μg, Bg) use DAK (Z-factor) and LGE (viscosity).
PO.VFP.DunsRos.Pout
Calculates outlet pipe pressure using Duns and Ros (1963), [psi]. Vertical gas wells. Gas properties (ρg, μg, Bg) use DAK (Z-factor) and LGE (viscosity).
PO.VFP.Gray.dPdL
Calculates pressure gradient for multiphase pipe flow using Gray (1974) correlation, [psi/ft]. Commonly used for gas wells that are also producing liquid.
PO.VFP.Gray.Pin
Calculates inlet pipe pressure using Gray (1974), [psi]. For gas wells producing liquid. Gas properties (ρg, μg, Bg) use DAK (Z-factor) and LGE (viscosity).
PO.VFP.Gray.Pout
Calculates outlet pipe pressure using Gray (1974), [psi]. For gas wells producing liquid. Gas properties (ρg, μg, Bg) use DAK (Z-factor) and LGE (viscosity).
PO.VFP.HagedornBrown.dPdL
Calculates pressure gradient for multiphase pipe flow using Hagedorn and Brown (1965) correlation with Griffith modification, [psi/ft]. Developed for vertical, upward flow and recommended only for near-vertical wellbores.
PO.VFP.HagedornBrown.Pin
Calculates inlet pipe pressure using Hagedorn and Brown (1965), [psi]. For vertical/near-vertical wells. Gas properties (ρg, μg, Bg) use DAK (Z-factor) and LGE (viscosity).
PO.VFP.HagedornBrown.Pout
Calculates outlet pipe pressure using Hagedorn and Brown (1965), [psi]. For vertical/near-vertical wells. Gas properties (ρg, μg, Bg) use DAK (Z-factor) and LGE (viscosity).
PO.VFP.Orkiszewski.dPdL
Calculates pressure gradient using Orkiszewski (1967) correlation, [psi/ft]. Vertical wells, widely used industry standard.
PO.VFP.Orkiszewski.Pin
Calculates inlet pipe pressure using Orkiszewski (1967), [psi]. Vertical wells. Gas properties (ρg, μg, Bg) use DAK (Z-factor) and LGE (viscosity).
PO.VFP.Orkiszewski.Pout
Calculates outlet pipe pressure using Orkiszewski (1967), [psi]. Vertical wells. Gas properties (ρg, μg, Bg) use DAK (Z-factor) and LGE (viscosity).
PO.VFP.PoettmannCarpenter.dPdL
Calculates pressure gradient using Poettmann-Carpenter (1952), [psi/ft]. Historical no-slip method for high-rate dispersed bubble flow.
PO.VFP.PoettmannCarpenter.Pin
Calculates inlet pipe pressure using Poettmann-Carpenter (1952), [psi]. No-slip method. Gas properties (ρg, μg, Bg) use DAK (Z-factor) and LGE (viscosity).
PO.VFP.PoettmannCarpenter.Pout
Calculates outlet pipe pressure using Poettmann-Carpenter (1952), [psi]. No-slip method. Gas properties (ρg, μg, Bg) use DAK (Z-factor) and LGE (viscosity).