Theory

Pipe Flow Overview

Introduction

Pipe flow calculations determine pressure changes along wellbores, flowlines, and pipelines. These calculations are essential for:

  • Tubing performance (VLP) — pressure profile from bottomhole to wellhead
  • Flowline sizing — pressure loss in surface lines
  • Artificial lift design — gas lift, ESP, rod pump optimization
  • Production system analysis — nodal analysis, system optimization

Flow Types

Single-Phase Flow

When only one phase (liquid or gas) flows through the pipe:

Flow TypeExamplesCorrelations Used
LiquidWater injection, dead oilFanning equation
GasDry gas wells, gas pipelinesCompressible flow equations

📖 Documentation: Single-Phase Pipe Flow

Multiphase Flow

When oil and gas (and possibly water) flow together, the flow becomes much more complex:

  • Slippage — gas moves faster than liquid
  • Flow patterns — bubble, slug, churn, annular, mist
  • Liquid holdup — fraction of pipe occupied by liquid

Empirical correlations are required because theoretical solutions are impractical.


Correlation Selection Guide

Decision Framework

                    ┌─────────────────────────┐
                    │   What is flowing?      │
                    └────────────┬────────────┘
                                 │
              ┌──────────────────┼──────────────────┐
              │                  │                  │
         Liquid Only        Gas Only          Oil + Gas
              │                  │                  │
              ▼                  ▼                  ▼
    ┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
    │ Single-Phase    │ │ Single-Phase    │ │ Multiphase      │
    │ Incompressible  │ │ Compressible    │ │ Correlation     │
    └─────────────────┘ └─────────────────┘ └────────┬────────┘
                                                      │
                              ┌────────────────────────┼─────────────────────┐
                              │                        │                     │
                         Vertical               Any Angle              Gas-Dominant
                              │                        │                     │
                              ▼                        ▼                     ▼
                    ┌─────────────────┐     ┌─────────────────┐    ┌─────────────────┐
                    │ Hagedorn-Brown  │     │ Beggs-Brill     │    │ Gray            │
                    │ (oil wells)     │     │ (general)       │    │ (gas wells)     │
                    └─────────────────┘     └─────────────────┘    └─────────────────┘

Correlation Comparison

CorrelationInclinationFlow TypeBest Application
Beggs-BrillAny angleOil + gasGeneral purpose, horizontal/inclined
Hagedorn-BrownVertical onlyOil + gasVertical oil wells, tubing
GrayAny angleGas + liquidGas wells with condensate/water
Fanning (liquid)Any angleLiquid onlyWater injection, dead oil
CompressibleAny angleGas onlyDry gas wells, gas pipelines

Available Functions

Single-Phase Liquid (Incompressible)

FunctionDescription
ReynoldsNumberLiquidReynolds number for liquid flow
FrictionPressureDropLiquidFanning friction pressure loss
PotentialEnergyPressureDropLiquidElevation pressure change
InletPipePressureLiquidCalculate inlet from outlet
OutletPipePressureLiquidCalculate outlet from inlet

📖 Documentation: Single-Phase Pipe Flow


Single-Phase Gas (Compressible)

FunctionDescription
ReynoldsNumberGasReynolds number for gas flow
InletPipePressureGasCalculate inlet from outlet
OutletPipePressureGasCalculate outlet from inlet

📖 Documentation: Single-Phase Pipe Flow


Multiphase: Beggs-Brill (1973)

The most versatile correlation — applicable at any pipe inclination from horizontal to vertical, for both upward and downward flow.

FunctionDescription
PressureGradientBeggsBrillPressure gradient, psi/ft
InletPressureBeggsBrillCalculate inlet from outlet
OutletPressureBeggsBrillCalculate outlet from inlet

Key Features:

  • Flow pattern prediction (segregated, intermittent, distributed)
  • Liquid holdup correlation for each pattern
  • Inclination correction factor
  • Friction factor modification for multiphase

Best For: Horizontal flowlines, inclined wells, general-purpose calculations


Multiphase: Hagedorn-Brown (1965)

Developed specifically for vertical upward flow in oil wells. Includes Griffith bubble flow modification.

FunctionDescription
PressureGradientHarBrownPressure gradient, psi/ft
InletPressureHarBrownCalculate inlet from outlet
OutletPressureHarBrownCalculate outlet from inlet

Key Features:

  • Empirical holdup correlations from extensive test data
  • Griffith modification for bubble flow at low gas rates
  • No-slip density calculation

Best For: Vertical oil producers, tubing performance curves

Limitations: Only valid for vertical (90°) upward flow


Multiphase: Gray (1974)

Developed for gas wells producing liquids (condensate or water). Part of API 14B.

FunctionDescription
PressureGradientGrayPressure gradient, psi/ft
InletPressureGrayCalculate inlet from outlet
OutletPressureGrayCalculate outlet from inlet

Key Features:

  • Designed for high gas-liquid ratios (GLR > 5000 scf/STB)
  • Accounts for liquid loading effects
  • Applicable at any inclination

Best For: Gas wells with condensate, wet gas wells, high-GLR producers


Input Parameters

Common Parameters

ParameterSymbolUnitsDescription
Liquid rateQLQ_Lbbl/dTotal liquid (oil + water)
Gas rateQgQ_gmmscf/dGas at standard conditions
Liquid densityρL\rho_Llb/ft³At flowing conditions
Gas specific gravityγg\gamma_g-Air = 1.0
Liquid viscosityμL\mu_LcPAt flowing conditions
Gas viscosityμg\mu_gcPAt flowing conditions
Z-factorZZ-Gas compressibility factor
IFTσ\sigmadynes/cmGas-liquid interfacial tension

Pipe Parameters

ParameterSymbolUnitsTypical Range
Inner diameterddin2 - 12 (tubing), 4 - 24 (flowlines)
LengthLLft100 - 20,000
Roughnessε/d\varepsilon/d-0.0001 - 0.01
Angleθ\thetadegrees-90 to +90

Angle Convention

AngleDescriptionExample
HorizontalSurface flowline
+90°Vertical upwardProducer wellbore
-90°Vertical downwardInjector wellbore
+45°Inclined upwardDeviated producer

Workflow: Tubing Performance Curve (VLP)

Step 1: Gather Data

  • Tubing: ID, length, roughness, well trajectory
  • Fluids: PVT data or correlations
  • Conditions: wellhead pressure, temperature profile

Step 2: Select Correlation

Well TypeRecommended Correlation
Vertical oil wellHagedorn-Brown
Deviated oil wellBeggs-Brill
Gas well with liquidsGray
Horizontal flowlineBeggs-Brill

Step 3: Calculate Pressure Profile

For inlet pressure calculation (bottom to top):

P_inlet = InletPressureBeggsBrill(Ql, Rho_l, Ul, Qg, SGgas, IFT,
                                   pipeID, pipeLength, pipeRoughness,
                                   pipeAngle, P_wellhead, T_avg)

Step 4: Generate VLP Curve

For multiple flow rates:

For each rate Q:
  P_bhf = InletPressure(..., Q, ..., P_whp)
  Plot (Q, P_bhf)

Step 5: Find Operating Point

Intersect VLP curve with IPR curve to determine:

  • Operating flow rate
  • Required bottomhole flowing pressure

Calculation Tips

Pressure Segmentation

For better accuracy with long pipes or large pressure changes:

  1. Divide pipe into segments (e.g., 500 ft each)
  2. Calculate properties at average conditions for each segment
  3. March from known pressure to unknown

Temperature Effects

  • Use average temperature for short pipes
  • Use temperature profile for deep wells
  • Gas properties (Z, μg\mu_g) are temperature-sensitive

Critical Flow Check

Near critical flow conditions (approaching sonic velocity), standard correlations may be inaccurate. Check if:

vmixture<0.5vsonicv_{mixture} < 0.5 \cdot v_{sonic}


Troubleshooting

ProblemLikely CauseSolution
Unrealistic pressure dropWrong correlation for inclinationMatch correlation to geometry
Negative outlet pressureFlow rate too high for pipeCheck pipe size, reduce rate
Results differ from fieldPVT data mismatchVerify fluid properties
Convergence issuesExtreme conditionsUse smaller segments

Detailed Correlations

Fluid Properties

Well Performance


References

  1. Beggs, H.D. and Brill, J.P. (1973). "A Study of Two-Phase Flow in Inclined Pipes." Journal of Petroleum Technology, May 1973, pp. 607-617. SPE-4007-PA.

  2. Hagedorn, A.R. and Brown, K.E. (1965). "Experimental Study of Pressure Gradients Occurring During Continuous Two-Phase Flow in Small-Diameter Vertical Conduits." Journal of Petroleum Technology, April 1965, pp. 475-484. SPE-940-PA.

  3. Gray, H.E. (1974). "Vertical Flow Correlation in Gas Wells." User's Manual for API 14B, Appendix B.

  4. Brill, J.P. and Mukherjee, H. (1999). Multiphase Flow in Wells. SPE Monograph Vol. 17.

  5. Brown, K.E. (1984). The Technology of Artificial Lift Methods, Vol. 1. PennWell Books.

Pipe Flow
pipe flowmultiphase flowpressure droptubing performanceVLP
Can't find what you're looking for?Request Documentation
This website uses cookies to enhance your experience and analyze site usage. By clicking "Accept", you consent to the use of cookies for analytics purposes. Read our privacy policy