Theory

Pressure Transient Analysis Overview

Introduction

Pressure Transient Analysis (PTA) uses pressure response measurements during flow rate changes to characterize reservoir and well properties. By analyzing how pressure propagates through the formation, engineers can determine:

  • Permeability β€” formation flow capacity
  • Skin factor β€” near-wellbore damage or stimulation
  • Reservoir boundaries β€” faults, aquifers, drainage limits
  • Drainage area β€” connected pore volume
  • Formation pressure β€” initial and average reservoir pressure

Petroleum Office provides analytical solutions for well testing interpretation based on the diffusivity equation.

Fundamental Concepts

The Diffusivity Equation

All PTA solutions derive from the diffusivity equation for slightly compressible fluid flow:

βˆ‚2pβˆ‚r2+1rβˆ‚pβˆ‚r=ϕμctkβˆ‚pβˆ‚t\frac{\partial^2 p}{\partial r^2} + \frac{1}{r} \frac{\partial p}{\partial r} = \frac{\phi \mu c_t}{k} \frac{\partial p}{\partial t}

This equation describes how pressure disturbances propagate radially from a wellbore through a porous medium.

Dimensionless Variables

Working in dimensionless form simplifies analysis and enables type curve matching:

VariableDefinitionPhysical Meaning
pDp_Dkh(piβˆ’p)141.2qBΞΌ\frac{kh(p_i - p)}{141.2 q B \mu}Normalized pressure drop
tDt_D0.0002637ktϕμctrw2\frac{0.0002637 k t}{\phi \mu c_t r_w^2}Normalized time
rDr_Dr/rwr / r_wNormalized radial distance
CDC_D0.8936CΟ•cthrw2\frac{0.8936 C}{\phi c_t h r_w^2}Normalized wellbore storage

πŸ“– Full Documentation: Dimensionless Variables


Model Selection Framework

Decision Tree

                         Start Here
                             β”‚
                             β–Ό
                 β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
                 β”‚  Boundary Effects?    β”‚
                 β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                      β”‚            β”‚
                     No           Yes
                      β”‚            β”‚
                      β–Ό            β–Ό
              β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
              β”‚  Infinite  β”‚  β”‚ Boundary Type? β”‚
              β”‚ Reservoir  β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
              β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜       β”‚      β”‚      β”‚
                    β”‚          Sealing  Const.  Mixed
                    β”‚           Fault    Pres.
                    β–Ό              β”‚       β”‚      β”‚
              β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”         β–Ό       β–Ό      β–Ό
              β”‚Wellbore  β”‚    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
              β”‚Storage & β”‚    β”‚  Bounded Reservoir β”‚
              β”‚  Skin?   β”‚    β”‚      Models        β”‚
              β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                 β”‚   β”‚
               Yes   No
                 β”‚    β”‚
                 β–Ό    β–Ό
            With WS  Line
            & Skin   Source

Quick Reference Table

ScenarioEarly TimeMiddle TimeLate TimeModel
Ideal infinite-Radial flowContinuesLine Source
With storage/skinUnit slopeRadial flowContinuesVW with S, C
Single fault-Radial β†’ doubled slopeDoubled slopeLinear sealing
Channel-Radial β†’ linearLinear flowParallel boundaries
Closed-Radial β†’ PSSPSS declineBounded rectangle

Available PTA Models

Infinite-Acting Reservoir

The fundamental solution for a well in an infinite homogeneous reservoir.

Line Source Solution:

pD(rD,tD)=βˆ’12Ei(βˆ’rD24tD)p_D(r_D, t_D) = -\frac{1}{2} \text{Ei}\left(-\frac{r_D^2}{4t_D}\right)

At the Wellbore (with skin and storage): Solutions use Laplace transform and Stehfest numerical inversion.

Diagnostic Features:

  • Semi-log straight line after wellbore effects
  • Slope gives permeability-thickness (kh)
  • Intercept gives skin factor

πŸ“– Full Documentation: Infinite Reservoir Solution


Bounded Reservoir

Real reservoirs have boundaries that affect pressure behavior. The method of images handles various boundary configurations.

Boundary Types:

TypePhysical ExamplePressure Effect
Sealing faultImpermeable barrierPressure drops faster
Constant pressureAquifer, gas capPressure stabilizes
MixedFault + aquiferCombined effects

Configurations:

  • Linear fault β€” Single sealing boundary
  • Perpendicular faults β€” Corner (90Β°)
  • Parallel faults β€” Channel geometry
  • Constant pressure boundaries β€” Pressure support

πŸ“– Full Documentation: Bounded Reservoir Models


Flow Regime Identification

Diagnostic Plot Features

The log-log diagnostic plot (pressure change and derivative vs. time) reveals flow regimes:

log(Ξ”p), log(Ξ”p')
      β”‚
      β”‚    ●●●●●●●●●●●●●●●          Derivative plateau = radial flow
      β”‚   ●
      β”‚  ●                          
      β”‚ ●    Transition from        
      │●     wellbore storage       
      │●●●●●                        Unit slope = wellbore storage
      β”‚
      └─────────────────────────→ log(Ξ”t)
Derivative SignatureFlow RegimeIndicates
Unit slope (45Β°)Wellbore storageEarly-time storage effects
Horizontal plateauRadial flowInfinite-acting period
Half slope (1/2)Linear flowFracture or channel
Doubled plateauBoundary effectSealing fault nearby
Falling derivativeConstant pressureAquifer support

Semi-Log Analysis

The Horner plot (or MDH plot for drawdown) identifies radial flow and extracts parameters:

pwf=piβˆ’mlog⁑(t)+constp_{wf} = p_i - m \log(t) + \text{const}

Where slope mm gives:

kh=162.6qBΞΌmkh = \frac{162.6 qB\mu}{m}

Interpretation Workflow

Step 1: Data Quality Check

  1. Verify rate history accuracy
  2. Check for gauge resolution and drift
  3. Identify operational events (shut-ins, rate changes)

Step 2: Diagnostic Analysis

  1. Plot log-log diagnostic (Ξ”p and derivative vs. Ξ”t)
  2. Identify flow regimes from derivative shape
  3. Determine appropriate model

Step 3: Model Selection

Based on diagnostic features:

  • Infinite reservoir if derivative stabilizes
  • Bounded if derivative deviates late-time
  • Wellbore effects if early unit slope

Step 4: Parameter Estimation

  1. Semi-log analysis for kh and skin
  2. Type curve matching for verification
  3. History matching for complex cases

Step 5: Validation

  1. Check material balance (average pressure)
  2. Compare with geology/seismic
  3. Validate against production data

Key Parameters Extracted

ParameterSymbolFromSignificance
Permeability-thicknesskhkhSemi-log slopeFlow capacity
Skin factorSSSemi-log interceptWellbore condition
Wellbore storageCCEarly unit slopeWellbore volume effects
Initial pressurepip_iExtrapolationOriginal reservoir pressure
Average pressurepˉ\bar{p}Horner extrapolationCurrent reservoir pressure
Distance to boundaryLLDeviation timeBoundary location

Function Categories

Dimensionless Pressure Functions

Calculate pDp_D for various reservoir configurations.

Real Pressure Functions

Convert dimensionless solutions to field units.

Derivative Functions

Calculate pressure derivative for diagnostic plots.

Boundary Models

Handle sealing faults, constant pressure, mixed boundaries.


Detailed Model Theory

Supporting Functions


References

  1. Lee, J., Rollins, J.B., and Spivey, J.P. (2003). Pressure Transient Testing. SPE Textbook Series Vol. 9.

  2. Bourdet, D. (2002). Well Test Analysis: The Use of Advanced Interpretation Models. Elsevier.

  3. Horne, R.N. (1995). Modern Well Test Analysis: A Computer-Aided Approach, 2nd Edition. Petroway Inc.

  4. Earlougher, R.C. Jr. (1977). Advances in Well Test Analysis. SPE Monograph Vol. 5.

  5. Matthews, C.S. and Russell, D.G. (1967). Pressure Buildup and Flow Tests in Wells. SPE Monograph Vol. 1.

Pressure Transient Analysis
pressure transient analysiswell testingdrawdownbuildupreservoir characterizationpermeabilityskin
This website uses cookies to enhance your experience and analyze site usage. By clicking "Accept", you consent to the use of cookies for analytics purposes. Read our privacy policy