Theory

Gas PVT Properties

Overview

Accurate prediction of natural gas properties is fundamental to:

  • Reservoir simulation — Material balance, GIIP calculations
  • Well deliverability — Backpressure equations, AOF determination
  • Pipeline design — Pressure drop, compression requirements
  • Gas lift optimization — Injection rate and pressure design
  • Gas processing — Separation, dehydration, compression

This document covers correlations for essential gas PVT properties:

  • Compressibility factor (Z) — Real gas deviation from ideal behavior
  • Gas formation volume factor (Bg) — Volume change from standard to reservoir conditions
  • Gas compressibility (Cg) — Pressure-volume relationship
  • Gas viscosity (μg) — Flow resistance
  • Gas density (ρg) — Mass per unit volume
  • Pseudo-critical properties — Ppc, Tpc for correlations

Real Gas Behavior and Z-Factor

The Gas Compressibility Factor

Real gases deviate from ideal gas law (pV=nRTpV = nRT) due to:

  1. Molecular volume — Gas molecules occupy space
  2. Intermolecular forces — Attraction and repulsion between molecules

The compressibility factor (Z) corrects for this deviation:

pV=ZnRTpV = Z n RT

Where:

  • ZZ = gas compressibility factor (dimensionless)
  • Z=1Z = 1 for ideal gas
  • Z<1Z < 1 at low P, high T (attraction dominates)
  • Z>1Z > 1 at high P (molecular volume dominates)

Corresponding States Principle

The principle of corresponding states allows prediction of Z using reduced properties:

Z=f(pr,Tr)Z = f(p_r, T_r)

Where:

  • pr=p/ppcp_r = p / p_{pc} = reduced pressure
  • Tr=T/TpcT_r = T / T_{pc} = reduced temperature
  • ppcp_{pc}, TpcT_{pc} = pseudo-critical pressure and temperature

Physical basis: All fluids behave similarly when compared at same reduced conditions (same distance from critical point).


Pseudo-Critical Properties

Standing Correlations (1977)

Standing developed correlations for sweet natural gases (no H₂S or CO₂) based on gas specific gravity:

ppc=756.8131.0γg3.6γg2p_{pc} = 756.8 - 131.0 \gamma_g - 3.6 \gamma_g^2 Tpc=169.2+349.5γg74.0γg2T_{pc} = 169.2 + 349.5 \gamma_g - 74.0 \gamma_g^2

Where:

  • ppcp_{pc} = pseudo-critical pressure, psia
  • TpcT_{pc} = pseudo-critical temperature, °R
  • γg\gamma_g = gas specific gravity (air = 1.0)

Applicability:

  • Gas gravity: 0.55 to 1.60
  • Temperatures: to 360°F
  • Pressures: to 12,500 psia
  • Accuracy: Z-factor within ±2% of experimental
  • Sweet gases only (minimal H₂S, CO₂)

Physical trends:

  • Heavier gases (high γg) → Lower Tpc, lower Ppc
  • Methane (γg ≈ 0.55): Tpc ≈ 343°R, Ppc ≈ 667 psia
  • Heavy gas (γg ≈ 1.0): Tpc ≈ 393°R, Ppc ≈ 623 psia

Sutton Correlations (1985)

Sutton improved Standing's correlations for better accuracy with separator gas:

ppc=787147γg7.5γg2p_{pc} = 787 - 147 \gamma_g - 7.5 \gamma_g^2 Tpc=169+314γg71.3γg2T_{pc} = 169 + 314 \gamma_g - 71.3 \gamma_g^2

Advantages over Standing:

  • Better for separator gas compositions
  • Accounts for presence of intermediate hydrocarbons (C₂-C₆)
  • Slightly better accuracy for condensate gases

When to use:

  • Standing — Standard choice for most applications
  • Sutton — When dealing with separator gas from high-GOR wells
  • Either gives acceptable results within typical engineering accuracy

Acid Gas Corrections

For sour gases containing H₂S and CO₂, apply Wichert-Aziz corrections:

Tpc=TpcϵT_{pc}' = T_{pc} - \epsilon ppc=ppcTpcTpc+yH2S(1yH2S)ϵp_{pc}' = \frac{p_{pc} T_{pc}'}{T_{pc} + y_{H_2S}(1 - y_{H_2S})\epsilon}

Where:

ϵ=120(facid0.9+facid1.6)+(fH2S0.5fH2S4)\epsilon = 120(f_{acid}^{0.9} + f_{acid}^{1.6}) + (f_{H_2S}^{0.5} - f_{H_2S}^4)

And:

  • facid=yH2S+yCO2f_{acid} = y_{H_2S} + y_{CO_2} (total acid gas fraction)
  • yH2Sy_{H_2S}, yCO2y_{CO_2} = mole fractions of H₂S and CO₂

Applicability:

  • CO₂ to 55 mol%
  • H₂S to 74 mol%
  • Temperatures to 300°F
  • Pressures to 7,000 psia
  • Z-factor accuracy within ±5%

Z-Factor Correlations

Dranchuk-Abou-Kassem (DAK) Correlation (1975)

The DAK correlation is the industry standard for Z-factor calculation. It fits the Standing-Katz chart using an 11-coefficient equation of state:

Z=1+(A1+A2Tr+A3Tr3+A4Tr4+A5Tr5)ρrZ = 1 + \left(A_1 + \frac{A_2}{T_r} + \frac{A_3}{T_r^3} + \frac{A_4}{T_r^4} + \frac{A_5}{T_r^5}\right)\rho_r +(A6+A7Tr+A8Tr2)ρr2A9(A7Tr+A8Tr2)ρr5+ \left(A_6 + \frac{A_7}{T_r} + \frac{A_8}{T_r^2}\right)\rho_r^2 - A_9\left(\frac{A_7}{T_r} + \frac{A_8}{T_r^2}\right)\rho_r^5 +A10(1+A11ρr2)ρr2Tr3exp(A11ρr2)+ A_{10}\left(1 + A_{11}\rho_r^2\right)\frac{\rho_r^2}{T_r^3}\exp\left(-A_{11}\rho_r^2\right)

Where the reduced density is calculated iteratively from:

ρr=0.27prZTr\rho_r = \frac{0.27 p_r}{Z T_r}

Coefficients:

CoefficientValueCoefficientValue
A1A_10.3265A7A_7-0.7361
A2A_2-1.0700A8A_80.1844
A3A_3-0.5339A9A_90.1056
A4A_40.01569A10A_{10}0.6134
A5A_5-0.05165A11A_{11}0.7210
A6A_60.5475

Calculation procedure:

  1. Calculate pr=p/ppcp_r = p/p_{pc} and Tr=T/TpcT_r = T/T_{pc}
  2. Initialize Z=1.0Z = 1.0 (first guess)
  3. Calculate ρr=0.27pr/(ZTr)\rho_r = 0.27 p_r / (Z T_r)
  4. Evaluate ZZ from equation
  5. Repeat steps 3-4 until convergence (typically 3-5 iterations)

Accuracy:

  • Within 1% of Standing-Katz chart for 0.2 < prp_r < 15, 0.7 < TrT_r < 3.0
  • Within 3% for 15 < prp_r < 30 (very high pressure)

Advantages:

  • Direct algebraic evaluation (no chart reading)
  • Highly accurate across wide range
  • Extrapolates well outside original data range
  • Industry-standard implementation

Brill-Beggs Z-Factor (1973)

Simplified correlation for quick hand calculations (less accurate than DAK):

A=1.39(Tr0.92)0.50.36Tr0.101A = 1.39(T_r - 0.92)^{0.5} - 0.36 T_r - 0.101 B=(0.620.23Tr)pr+(0.066Tr0.860.037)pr2+0.32109(Tr1)pr6B = (0.62 - 0.23 T_r) p_r + \left(\frac{0.066}{T_r - 0.86} - 0.037\right) p_r^2 + \frac{0.32}{10^{9(T_r-1)}} p_r^6 C=0.1320.32logTrC = 0.132 - 0.32 \log T_r D=10(0.31060.49Tr+0.1824Tr2)D = 10^{(0.3106 - 0.49 T_r + 0.1824 T_r^2)} Z=A+(1A)eB+CprDZ = A + (1 - A) e^{-B} + C p_r^D

When to use:

  • Quick estimates without iteration
  • Spreadsheet without circular reference capability
  • Accuracy ±5% (adequate for many engineering calculations)

Gas Formation Volume Factor (Bg)

The gas FVF relates reservoir volume to standard volume:

Bg=VRVsc=ZTP×PscTscB_g = \frac{V_R}{V_{sc}} = \frac{Z T}{P} \times \frac{P_{sc}}{T_{sc}}

Using standard conditions (14.65 psia, 60°F = 520°R):

Bg=0.00502ZTpB_g = 0.00502 \frac{Z T}{p}

Or in field units (res bbl/scf):

Bg=0.00502×Z×TpB_g = \frac{0.00502 \times Z \times T}{p}

Where:

  • BgB_g = gas formation volume factor, res bbl/scf
  • ZZ = compressibility factor at (p,T)(p, T)
  • TT = temperature, °R
  • pp = pressure, psia

Physical interpretation:

  • BgB_g increases with temperature (expansion)
  • BgB_g decreases with pressure (compression)
  • Typical values: 0.0005 to 0.01 bbl/scf (reservoir conditions)

Gas Compressibility (Cg)

The isothermal gas compressibility measures volume change with pressure:

Cg=1V(Vp)T=1p1Z(Zp)TC_g = -\frac{1}{V}\left(\frac{\partial V}{\partial p}\right)_T = \frac{1}{p} - \frac{1}{Z}\left(\frac{\partial Z}{\partial p}\right)_T

On a pseudo-reduced basis:

cpr=Cgppc=1pr0.27Z2Tr[(Z/ρr)Tr1+(ρr/Z)(Z/ρr)Tr]c_{pr} = C_g p_{pc} = \frac{1}{p_r} - \frac{0.27}{Z^2 T_r}\left[\frac{(\partial Z/\partial \rho_r)_{T_r}}{1 + (\rho_r/Z)(\partial Z/\partial \rho_r)_{T_r}}\right]

The derivative Z/ρr\partial Z/\partial \rho_r is obtained by differentiating the DAK equation.

Practical approximation:

For moderate pressures (prp_r < 5):

Cg1pC_g \approx \frac{1}{p}

For all pressures, calculate from Z using numerical differentiation or use charts.

Typical values:

  • Low pressure (100 psia): Cg ≈ 0.01 psi⁻¹
  • Moderate pressure (1000 psia): Cg ≈ 0.001 psi⁻¹
  • High pressure (5000 psia): Cg ≈ 0.0002 psi⁻¹

Gas Density

Gas density at reservoir conditions:

ρg=pMgZRT\rho_g = \frac{p M_g}{Z R T}

Using molecular weight Mg=28.96γgM_g = 28.96 \gamma_g (where air MW = 28.96):

ρg=28.96γgp10.73ZT\rho_g = \frac{28.96 \gamma_g p}{10.73 Z T}

Simplifying:

ρg=2.70γgpZT\rho_g = \frac{2.70 \gamma_g p}{Z T}

Where:

  • ρg\rho_g = gas density, lb/ft³
  • γg\gamma_g = gas specific gravity (air = 1.0)
  • pp = pressure, psia
  • TT = temperature, °R
  • ZZ = compressibility factor

At standard conditions (14.65 psia, 60°F, Z ≈ 1.0):

ρg,sc=0.0764γg lb/ft3\rho_{g,sc} = 0.0764 \gamma_g \text{ lb/ft}^3

Or equivalently: 1 scf of gas weighs (0.0764γg/5.615)(0.0764 \gamma_g / 5.615) lb/scf.


Gas Viscosity — Lee-Gonzalez-Eakin (LGE) Correlation (1966)

Gas viscosity affects flow resistance in reservoirs, wells, and pipelines. The LGE correlation predicts μg from density and molecular weight:

μg=Kexp(XρgY)×104\mu_g = K \exp\left(X \rho_g^Y\right) \times 10^{-4}

Where:

K=(7.77+0.0063Ma)T1.5122.4+12.9Ma+TK = \frac{(7.77 + 0.0063 M_a) T^{1.5}}{122.4 + 12.9 M_a + T} X=2.57+1914.5T+0.0095MaX = 2.57 + \frac{1914.5}{T} + 0.0095 M_a Y=1.11+0.04XY = 1.11 + 0.04 X

And:

  • μg\mu_g = gas viscosity, cP
  • ρg\rho_g = gas density, g/cm³ (divide lb/ft³ by 62.4)
  • MaM_a = apparent molecular weight = 28.96γg28.96 \gamma_g
  • TT = temperature, °R

Accuracy:

  • Standard deviation: ±1.9% for light hydrocarbons
  • ±5% for natural gas mixtures
  • Valid to 340°F and 8,000 psia

Physical trends:

  • μg increases with pressure (increased density, molecular collisions)
  • μg increases with temperature (faster molecular motion)
  • Heavier gases have higher viscosity

Typical values:

  • Light gas (γg = 0.6) at 1000 psia, 150°F: μg ≈ 0.015 cP
  • Heavy gas (γg = 0.9) at 3000 psia, 200°F: μg ≈ 0.025 cP

Functions Covered

The following functions implement gas PVT property correlations. See each function page for detailed parameter definitions, Excel syntax, and usage examples.

FunctionDescriptionUnits
ZfactorDAKDranchuk-Abou-Kassem Z-factor (iterative, accurate)dimensionless
ZfactorBrillBeggsBrill-Beggs Z-factor (explicit, approximate)dimensionless
BgGas formation volume factorres bbl/scf
CgGas isothermal compressibilitypsi⁻¹
GasDensityGas density at reservoir conditionslb/ft³
UgLGELee-Gonzalez-Eakin gas viscositycP
PpcStandingPseudo-critical pressure (Standing)psia
PpcSuttonPseudo-critical pressure (Sutton)psia
TpcStandingPseudo-critical temperature (Standing)°R
TpcSuttonPseudo-critical temperature (Sutton)°R


References

  1. Dranchuk, P.M. and Abou-Kassem, J.H. (1975). "Calculation of Z Factors for Natural Gases Using Equations of State." Journal of Canadian Petroleum Technology, 14(3), pp. 34-36. PETSOC-75-03-03.

  2. Lee, A.L., Gonzalez, M.H., and Eakin, B.E. (1966). "The Viscosity of Natural Gases." Journal of Petroleum Technology, 18(8), pp. 997-1000. SPE-1340-PA.

  3. McCain, W.D. Jr. (1991). "Reservoir-Fluid Property Correlations—State of the Art." SPE Reservoir Engineering, 6(2), pp. 266-272. SPE-18571-PA.

  4. Standing, M.B. (1977). "Volumetric and Phase Behavior of Oil Field Hydrocarbon Systems." 9th Printing. Richardson, TX: Society of Petroleum Engineers.

  5. Sutton, R.P. (1985). "Compressibility Factors for High-Molecular-Weight Reservoir Gases." SPE 14265, presented at SPE Annual Technical Conference, Las Vegas.

  6. Wichert, E. and Aziz, K. (1972). "Calculate Z's for Sour Gases." Hydrocarbon Processing, 51(5), pp. 119-122.

  7. Ahmed, T. (2019). Reservoir Engineering Handbook, 5th Edition. Cambridge, MA: Gulf Professional Publishing. Chapter 3: Fundamentals of Rock Properties.

  8. Whitson, C.H. and Brule, M.R. (2000). Phase Behavior. Monograph Series Vol. 20. Richardson, TX: Society of Petroleum Engineers. Chapter 4: Natural Gas Properties.

PVT Properties
PVTgas propertiesZ-factorgas viscositygas compressibilitypseudo-criticalsDranchuk-Abou-KassemLee-Gonzalez-EakinStandingSutton
Can't find what you're looking for?Request Documentation
This website uses cookies to enhance your experience and analyze site usage. By clicking "Accept", you consent to the use of cookies for analytics purposes. Read our privacy policy