Theory

Oil Viscosity Correlations

Overview

Oil viscosity (μo\mu_o) is a critical fluid property that governs flow behavior in reservoirs and production systems:

  • Inflow performance — affects productivity index and deliverability
  • Pressure transient analysis — appears in dimensionless time and mobility calculations
  • Relative permeability — influences fractional flow and displacement efficiency
  • Artificial lift design — determines pump performance and gas lift requirements
  • Pipeline hydraulics — controls pressure drop and flow regime

Oil viscosity depends strongly on:

  • Pressure — behavior differs above and below bubble point
  • Temperature — viscosity decreases exponentially with temperature
  • Dissolved gas content — gas in solution reduces viscosity
  • Oil composition — heavier oils have higher viscosities

Viscosity Behavior vs. Pressure

The viscosity-pressure relationship exhibits three distinct regimes:

μo
 │                           
 │    ┌──────────────────────  Undersaturated: μo increases
 │   /                          with increasing P (above Pb)
 │  │
 │  │ ● μob (at bubble point)
 │  │
 │   \                         Saturated: μo decreases as
 │    \_______________________  Rs increases (below Pb)
 │     
 └──────────────────────────→ P
             Pb
Pressure RegionControlling FactorTrend
P<PbP < P_b (saturated)Gas in solutionμo\mu_o decreases as RsR_s increases
P=PbP = P_b (bubble point)Maximum gas contentμo\mu_o at minimum value
P>PbP > P_b (undersaturated)Liquid compressionμo\mu_o increases with PP

Three-Stage Viscosity Calculation

Petroleum Office uses a three-stage approach to calculate viscosity at any pressure:

┌─────────────────────────────────────────────────────────────┐
│ Stage 1: Dead Oil Viscosity (μod)                           │
│ ──────────────────────────────────────────────────────────  │
│ Oil with NO dissolved gas at atmospheric pressure           │
│ Inputs: γAPI, T                                             │
│ Function: UodEgbogah1983                                    │
└─────────────────────────────────────────────────────────────┘
                        │
                        ▼
┌─────────────────────────────────────────────────────────────┐
│ Stage 2: Saturated Oil Viscosity (μo, P ≤ Pb)               │
│ ──────────────────────────────────────────────────────────  │
│ Oil with dissolved gas at or below bubble point             │
│ Inputs: μod, Rs                                             │
│ Function: UoSatBeggsRobinson1975                            │
└─────────────────────────────────────────────────────────────┘
                        │
                        ▼
┌─────────────────────────────────────────────────────────────┐
│ Stage 3: Undersaturated Oil Viscosity (μo, P > Pb)          │
│ ──────────────────────────────────────────────────────────  │
│ Single-phase oil compressed above bubble point              │
│ Inputs: μob, P, Pb                                          │
│ Function: UoUSatVasquezBeggs1980                            │
└─────────────────────────────────────────────────────────────┘

Correlation Equations

Dead Oil Viscosity — Egbogah (1983)

Dead oil is crude oil with no dissolved gas at atmospheric pressure. The Egbogah correlation predicts viscosity from API gravity and temperature:

log10[log10(μod+1)]=1.86530.025086γAPI0.5644log10(T)\log_{10}[\log_{10}(\mu_{od} + 1)] = 1.8653 - 0.025086 \, \gamma_{API} - 0.5644 \, \log_{10}(T)

Solving for viscosity:

μod=10101.86530.025086γAPI0.5644log10(T)1\mu_{od} = 10^{10^{1.8653 - 0.025086 \, \gamma_{API} - 0.5644 \, \log_{10}(T)}} - 1

Where:

  • μod\mu_{od} = dead oil viscosity, cP
  • γAPI\gamma_{API} = oil API gravity, °API
  • TT = temperature, °F

Applicability:

  • Light to heavy oils (5<γAPI<505 < \gamma_{API} < 50)
  • Standard reservoir temperatures (60<T<30060 < T < 300 °F)
  • Atmospheric pressure (no dissolved gas)

Physical Basis:

  • Heavier oils (lower API) have higher viscosity
  • Viscosity decreases exponentially with temperature
  • The double-logarithmic form captures the exponential temperature sensitivity

Saturated Oil Viscosity — Beggs and Robinson (1975)

When gas dissolves in oil, the viscosity decreases. The Beggs and Robinson correlation accounts for this effect:

A=10.715(Rs+100)0.515A = 10.715 \, (R_s + 100)^{-0.515} B=5.44(Rs+150)0.338B = 5.44 \, (R_s + 150)^{-0.338} μo=AμodB\mu_o = A \, \mu_{od}^B

Where:

  • μo\mu_o = saturated oil viscosity at pressure PPbP \le P_b, cP
  • μod\mu_{od} = dead oil viscosity from Egbogah or equivalent, cP
  • RsR_s = solution gas-oil ratio at pressure PP, scf/STB

Applicability:

ParameterMinMax
RsR_s202,000 scf/STB
μod\mu_{od}0.2100 cP

Physical Basis:

  • As RsR_s increases, both AA and BB decrease
  • The power-law relationship captures how dissolved gas lightens the oil
  • At Rs=0R_s = 0, the equation reduces to μo=μod\mu_o = \mu_{od}

Undersaturated Oil Viscosity — Vasquez and Beggs (1980)

Above the bubble point, oil is single-phase liquid. Compression causes viscosity to increase with pressure:

m=2.6P1.187exp(11.5138.98×105P)m = 2.6 \, P^{1.187} \, \exp(-11.513 - 8.98 \times 10^{-5} \, P) μo=μob(PPb)m\mu_o = \mu_{ob} \left( \frac{P}{P_b} \right)^m

Where:

  • μo\mu_o = oil viscosity at pressure P>PbP > P_b, cP
  • μob\mu_{ob} = oil viscosity at bubble point pressure, cP
  • PP = reservoir pressure, psia
  • PbP_b = bubble point pressure, psia

Physical Basis:

  • Liquid compression increases molecular packing density
  • The exponential term in mm moderates growth at high pressures
  • The power-law form on (P/Pb)(P/P_b) ensures μo=μob\mu_o = \mu_{ob} when P=PbP = P_b

Functions Covered

The following functions implement these oil viscosity correlations. See each function page for detailed parameter definitions, Excel syntax, and usage examples.

FunctionStageDescription
UodEgbogah1983Dead OilViscosity with no dissolved gas
UoSatBeggsRobinson1975SaturatedViscosity at or below PbP_b
UoUSatVasquezBeggs1980UndersaturatedViscosity above PbP_b

Calculation Workflow

At Pressures Below Bubble Point (PPbP \le P_b)

  1. Calculate dead oil viscosity: μod=f(γAPI,T)\mu_{od} = f(\gamma_{API}, T) using Egbogah
  2. Determine RsR_s at pressure PP (from Rs correlation)
  3. Calculate saturated viscosity: μo=f(μod,Rs)\mu_o = f(\mu_{od}, R_s) using Beggs-Robinson

At Pressures Above Bubble Point (P>PbP > P_b)

  1. Calculate dead oil viscosity: μod=f(γAPI,T)\mu_{od} = f(\gamma_{API}, T) using Egbogah
  2. Determine RsbR_{sb} at bubble point (maximum dissolved gas)
  3. Calculate bubble point viscosity: μob=f(μod,Rsb)\mu_{ob} = f(\mu_{od}, R_{sb}) using Beggs-Robinson
  4. Calculate undersaturated viscosity: μo=f(μob,P,Pb)\mu_o = f(\mu_{ob}, P, P_b) using Vasquez-Beggs


References

  1. Egbogah, E.O. (1983). "An Improved Temperature-Viscosity Correlation for Crude Oil Systems." Annual Technical Meeting, Petroleum Society of Canada.

  2. Beggs, H.D. and Robinson, J.R. (1975). "Estimating the Viscosity of Crude Oil Systems." Journal of Petroleum Technology, 27(9), pp. 1140-1141.

  3. Vazquez, M. and Beggs, H.D. (1980). "Correlations for Fluid Physical Property Prediction." Journal of Petroleum Technology, 32(6), pp. 968-970.

  4. McCain, W.D. Jr. (1990). The Properties of Petroleum Fluids, 2nd Edition. PennWell Books. Chapter 3: Crude Oil Properties.

  5. Santos, R.G., Silva, J.A., Mehl, A., and Experiment, P.E. (2019). "Comparison of PVT Correlations with PVT Laboratory Data from the Brazilian Campos Basin." Brazilian Journal of Petroleum and Gas, 13(3), pp. 129-157.

PVT Properties
PVTviscositycorrelationscrude oildead oilsaturated oilundersaturated oil
This website uses cookies to enhance your experience and analyze site usage. By clicking "Accept", you consent to the use of cookies for analytics purposes. Read our privacy policy