Theory

Ansah-Knowles-Buba (AKB) Decline Model

The Ansah-Knowles-Buba (AKB) model is a semi-analytical decline model specifically developed for gas wells under boundary-dominated flow conditions. Unlike empirical Arps models, AKB is derived from material balance principles coupled with stabilized gas deliverability equations.


Theory

Physical Basis

The AKB model addresses the challenge of non-linear gas flow by linearizing the pressure-dependent gas properties. The key insight is that the μ<sub>g</sub>(p)·c<sub>g</sub>(p) product can be approximated by a first-order polynomial function of pressure, enabling semi-analytical solutions.

The model couples:

  1. Gas material balance equation — relates cumulative production to reservoir pressure
  2. Stabilized gas deliverability — valid for boundary-dominated flow (pseudo-steady state)

This approach provides a more rigorous treatment of gas compressibility changes than purely empirical methods.

Rate Equation

The semi-analytical rate-time relationship is:

qg(t)=qgi4α2exp(βt)[(1+α)(1α)exp(βt)]2q_g(t) = q_{gi} \cdot \frac{4\alpha^2 \exp(-\beta t)}{\left[(1+\alpha) - (1-\alpha)\exp(-\beta t)\right]^2}

Where:

ParameterDescriptionUnits
qgiq_{gi}Initial gas rateL³/T (e.g., Mscf/day)
α\alphaDimensionless pressure ratiodimensionless
β\betaDecline parameter1/T (e.g., 1/day)
ttTimeT (e.g., days)

Parameter Definitions

The dimensionless parameter α\alpha represents the ratio of wellbore to initial reservoir conditions:

α=pwf/zwfpi/zi\alpha = \frac{p_{wf}/z_{wf}}{p_i/z_i}

The decline parameter β\beta incorporates reservoir and well properties:

β=pwfzwfJgpi/zi1ctiG\beta = \frac{p_{wf}}{z_{wf}} \cdot \frac{J_g}{p_i/z_i} \cdot \frac{1}{c_{ti} \cdot G}

Where:

SymbolDescriptionUnits
pwfp_{wf}Flowing bottomhole pressurepsia
zwfz_{wf}Gas deviation factor at pwfp_{wf}dimensionless
pip_iInitial reservoir pressurepsia
ziz_iGas deviation factor at pip_idimensionless
JgJ_gGas productivity indexMscf/day/psi²
ctic_{ti}Total compressibility at initial conditions1/psi
GGOriginal gas in placeMscf

Gas Productivity Index

The productivity index JgJ_g for stabilized flow is:

Jg=2kh141.2μiBgiln(2.2458ACArwa2)J_g = \frac{2kh}{141.2 \mu_i B_{gi} \ln\left(\frac{2.2458A}{C_A r_{wa}^2}\right)}

Where:

SymbolDescriptionUnits
kkPermeabilitymd
hhNet pay thicknessft
μi\mu_iGas viscosity at initial conditionscp
BgiB_{gi}Gas formation volume factor at pip_ircf/scf
AADrainage areaft²
CAC_ADietz shape factordimensionless
rwar_{wa}Apparent wellbore radius (including skin)ft

Cumulative Production

Integrating the rate equation yields cumulative production:

Gp(t)=qgi2α(exp(βt)1)β[α1+(1+α)exp(βt)]G_p(t) = q_{gi} \cdot \frac{2\alpha(\exp(\beta t) - 1)}{\beta\left[\alpha - 1 + (1+\alpha)\exp(\beta t)\right]}

Special Case: α → 0

When α\alpha approaches zero (very low flowing pressure relative to initial pressure), the rate equation simplifies to:

qg(t)=qgi(1+βt2)2q_g(t) = \frac{q_{gi}}{\left(1 + \frac{\beta t}{2}\right)^2}

This limit avoids numerical instability from the 0/0 indeterminate form.


Diagnostic Functions

Loss-Ratio (D-function)

The instantaneous decline rate for AKB:

D(t)=β[1+exp(βt)+α(exp(βt)1)]α+exp(βt)+αexp(βt)1D(t) = \frac{\beta\left[1 + \exp(\beta t) + \alpha(\exp(\beta t) - 1)\right]}{\alpha + \exp(\beta t) + \alpha\exp(\beta t) - 1}

b-Parameter

The time-varying b-parameter:

b(t)=2exp(βt)(1α2)[1α+(1+α)exp(βt)]2b(t) = \frac{2\exp(\beta t)(1 - \alpha^2)}{\left[1 - \alpha + (1+\alpha)\exp(\beta t)\right]^2}

Unlike Arps hyperbolic where bb is constant, AKB exhibits time-varying bb that captures the physics of gas reservoir depletion.


Functions

Rate Calculation

AnsahKnowlesBubaDeclineRate — Production rate at time t

Parameters:

ParameterDescriptionUnits
QiInitial production rateL³/T
alphaDimensionless pressure ratiodimensionless
betaDecline parameter1/T
timeEvaluation timeT

Returns: Production rate at the specified time, [L³/T]


Cumulative Production

AnsahKnowlesBubaDeclineCumulative — Cumulative production to time t

Parameters:

ParameterDescriptionUnits
QiInitial production rateL³/T
alphaDimensionless pressure ratiodimensionless
betaDecline parameter1/T
timeEvaluation timeT

Returns: Cumulative production from time 0 to t, [L³]


Economic Life

AnsahKnowlesBubaDeclineTime — Time to reach economic limit

Parameters:

ParameterDescriptionUnits
QiInitial production rateL³/T
alphaDimensionless pressure ratiodimensionless
betaDecline parameter1/T
econRateEconomic rate limitL³/T

Returns: Time when production rate falls to the economic limit, [T]


EUR Calculation

AnsahKnowlesBubaDeclineEUR — Estimated Ultimate Recovery

Parameters:

ParameterDescriptionUnits
QiInitial production rateL³/T
alphaDimensionless pressure ratiodimensionless
betaDecline parameter1/T
econRateEconomic rate limitL³/T

Returns: Cumulative production to the economic limit, [L³]


Curve Fitting

AnsahKnowlesBubaDeclineFitParameters — Fit model to production data

Parameters:

ParameterDescriptionType
timeValuesArray of time samplesRange or array
rateValuesArray of observed ratesRange or array

Returns: Array [Qi, Alpha, Beta] of fitted parameters


Weighted Curve Fitting

AnsahKnowlesBubaDeclineWeightedFitParameters — Fit with weighted samples

Parameters:

ParameterDescriptionType
timeValuesArray of time samplesRange or array
rateValuesArray of observed ratesRange or array
weightsValuesPer-sample weightsRange or array

Returns: Array [Qi, Alpha, Beta] of fitted parameters

Use weights to emphasize recent production data or de-emphasize periods with operational issues.


When to Use AKB

Best Applications

ScenarioReason
Gas wells in depletionDerived from gas material balance
Boundary-dominated flowAssumes pseudo-steady state
Known reservoir propertiesCan estimate α\alpha and β\beta from reservoir data
Physics-based forecastingMore rigorous than empirical Arps

Comparison with Arps Models

AspectAKBArps Hyperbolic
DerivationSemi-analytical (material balance)Purely empirical
b-parameterTime-varyingConstant
Gas compressibilityExplicitly handledIgnored
Parameter meaningTied to reservoir propertiesCurve-fit only
Best forGas wells, physics-basedOil wells, quick estimates

Limitations

  • Requires boundary-dominated flow (not valid for transient or fracture-dominated flow)
  • Assumes stabilized deliverability equation applies
  • Linear approximation of μ<sub>g</sub>c<sub>g</sub> may lose accuracy at very low pressures
  • For unconventional wells with extended transient flow, consider Duong or SEPD models

References

  1. Ansah, J., Knowles, R.S., and Blasingame, T.A. (1996). A Semi-Analytic (p/z) Rate-Time Relation for the Analysis and Prediction of Gas Well Performance. SPE 35268, SPE Mid-Continent Gas Symposium, Amarillo, Texas.

  2. Currie, S. (2010). User Manual for Rate-Time Analysis Spreadsheet. Texas A&M University.


See Also

Decline Models
declinegas wellssemi-analyticalboundary-dominated flowAKB
Can't find what you're looking for?Request Documentation
This website uses cookies to enhance your experience and analyze site usage. By clicking "Accept", you consent to the use of cookies for analytics purposes. Read our privacy policy