Theory

Horizontal Well Productivity

Overview

Horizontal wells offer significant advantages over vertical wells:

  • Larger contact area with reservoir
  • Lower drawdown for same production rate
  • Delayed water/gas breakthrough
  • Better drainage of thin, layered reservoirs
  • Access to naturally fractured reservoirs

Horizontal well productivity is governed by:

  1. Horizontal permeability (kh) — Flow perpendicular to wellbore
  2. Vertical permeability (kv) — Flow from above/below wellbore
  3. Anisotropy ratio (kv/kh) — Critical parameter
  4. Well length (L) — Longer = higher productivity
  5. Reservoir thickness (h) — Thin reservoirs benefit most
  6. Wellbore position (zw) — Vertical placement in pay zone

Productivity Index Correlations

Five major correlations are implemented, each with specific advantages:

CorrelationYearBest ForKey Feature
Joshi1988General purposeAnisotropic, any well position
Borisov1984Isotropic reservoirsSimplest, kv = kh only
Giger-Reiss-Jourdan (GRJ)1985Anisotropic, long wellsElliptical drainage
Renard-Dupuy (RD)1991Box-shaped drainageRectangular reservoirs
Babu-Odeh (BO)1989Any well positionMost general, complex

Joshi Method (1988)

Productivity Index

Jh=khh141.2Bμ[ln(a+a2(L/2)2L/2)+hLln(h2πrwkh/kv)(kh/kv1+kh/kv)+s]J_h = \frac{k_h h}{141.2 B \mu \left[\ln\left(\frac{a + \sqrt{a^2 - (L/2)^2}}{L/2}\right) + \frac{h}{L} \ln\left(\frac{h}{2\pi r_w \sqrt{k_h/k_v}}\right)\left(\frac{\sqrt{k_h/k_v}}{1 + \sqrt{k_h/k_v}}\right) + s\right]}

Where:

a=L21+(2rehL)4L2[0.5+0.25+(rehL)4]a = \frac{L}{2} \sqrt{1 + \left(\frac{2r_{eh}}{L}\right)^4} \approx \frac{L}{2}\left[0.5 + \sqrt{0.25 + \left(\frac{r_{eh}}{L}\right)^4}\right]

Parameters:

  • LL = horizontal well length, ft
  • hh = reservoir thickness, ft
  • rehr_{eh} = drainage radius in horizontal plane, ft
  • rwr_w = wellbore radius, ft
  • khk_h = horizontal permeability, md
  • kvk_v = vertical permeability, md
  • ss = skin factor

Physical interpretation:

  • First term: horizontal drainage (major contribution)
  • Second term: vertical drainage correction
  • Accounts for anisotropy (kv ≠ kh)

Drainage Area

Joshi provides two methods:

Method 1 (Ellipse):

A=πrehrevA = \pi r_{eh} r_{ev}

Where:

rev=rehkv/khr_{ev} = r_{eh} \sqrt{k_v / k_h}

Method 2 (Rectangle with rounded ends):

A=L×W+πW24A = L \times W + \frac{\pi W^2}{4}

Where W = drainage width.

Typical values:

  • L = 2000 ft, reh = 1000 ft → A ≈ 10-15 acres

Borisov Method (1984)

Productivity Index (Isotropic: kv = kh)

Jh=kh141.2Bμ[ln(4reL)+s]J_h = \frac{k h}{141.2 B \mu \left[\ln\left(\frac{4r_e}{L}\right) + s\right]}

Where:

  • Assumes isotropic reservoir (kv = kh = k)
  • Simplest correlation
  • re = equivalent circular drainage radius

When to use: Sandstone with uniform permeability in all directions.

Limitation: Cannot handle anisotropy (most reservoirs are anisotropic!).


Giger-Reiss-Jourdan (GRJ) Method (1985)

Productivity Index

Jh=2πkhh141.2Bμ[ln(Lrw)+2πkhβL(L2a)+s]J_h = \frac{2\pi k_h h}{141.2 B \mu \left[\ln\left(\frac{L}{r_w}\right) + \frac{2\pi k_h}{\beta L}\left(\frac{L}{2a}\right) + s\right]}

Where:

β=2πkhkv\beta = 2\pi \sqrt{k_h k_v} a=major axis of elliptical drainagea = \text{major axis of elliptical drainage}

Features:

  • Elliptical drainage assumption
  • Accounts for anisotropy via β\beta
  • Good for long horizontal wells (L > 1000 ft)

Renard-Dupuy (RD) Method (1991)

Productivity Index

Jh=khh141.2Bμ[ln((xexw)rw)+s]J_h = \frac{k_h h}{141.2 B \mu \left[\ln\left(\frac{(x_e - x_w)}{r_w'}\right) + s\right]}

Where:

rw=rwkhkvr_w' = r_w \sqrt{\frac{k_h}{k_v}}

Features:

  • Rectangular drainage (box-shaped)
  • xe = horizontal extent of drainage
  • xw = well position from edge
  • Good for wells in elongated rectangular reservoirs

Babu-Odeh (BO) Method (1989)

Full General Form (BO)

Most complex but most accurate for any well position in reservoir:

Jh=2πkhh141.2Bμ[ln(IyIx)+hLln(hβ2π)+F+s]J_h = \frac{2\pi k_h h}{141.2 B \mu \left[\ln\left(\frac{I_y}{I_x}\right) + \frac{h}{L}\ln\left(\frac{h\beta}{2\pi}\right) + F + s\right]}

Where IxI_x, IyI_y are shape factors depending on:

  • Well location (xw, yw, zw) relative to drainage boundaries
  • Anisotropy ratio (kv/kh)
  • Drainage shape (xe, ye, h)

Function: ProdIndexHorWellBO — Full positioning

Simplified Form (BO2 — Centered Well)

For well centered in reservoir (xw = xe/2, yw = ye/2):

Jh=khh141.2Bμ[C1+C2hL+C3ln(L)+s]J_h = \frac{k_h h}{141.2 B \mu \left[C_1 + C_2 \frac{h}{L} + C_3 \ln(L) + s\right]}

Where C₁, C₂, C₃ are correlation constants.

Function: ProdIndexHorWellBO2 — Simplified for centered wells

When to use:

  • BO (full) — Well near edges or boundaries
  • BO2 — Well centered, simpler calculation

Comparison of Methods

Prediction Accuracy (Relative to Numerical Simulation)

MethodCentered WellNear BoundaryAnisotropic
JoshiGood (±15%)GoodExcellent
BorisovFair (±25%)PoorCannot handle
GRJGood (±10%)FairGood
RDGood (±15%)GoodGood
Babu-OdehExcellent (±5%)ExcellentExcellent

Recommendation:

  • General use: Joshi (widely validated, simple)
  • Best accuracy: Babu-Odeh (if positioning data available)
  • Quick estimate: Borisov (isotropic only)

Effect of Anisotropy

For typical carbonate (kv/kh = 0.1):

Well LengthJoshi JBorisov JError if Ignore Anisotropy
1000 ft25 STB/d/psi45 STB/d/psi+80% overprediction!
2000 ft45 STB/d/psi75 STB/d/psi+67% overprediction!

Conclusion: Must account for anisotropy in carbonates, shales, and layered reservoirs.


Drainage Area Estimation

DrainageAreaHorWell1 (Joshi Ellipse)

A=πabA = \pi a b

Where:

  • aa = major axis (calculated from Joshi's equations)
  • b=akv/khb = a \sqrt{k_v/k_h} = minor axis

DrainageAreaHorWell2 (Joshi Rectangle)

A=L×W+πW24A = L \times W + \frac{\pi W^2}{4}

Where W is estimated drainage width.

Use case: Well spacing design, interference analysis.


Functions Covered

The following functions implement horizontal well productivity correlations. See each function page for detailed parameter definitions, Excel syntax, and usage examples.

Productivity Index Functions

FunctionMethodDescription
ProdIndexHorWellJoshiJoshiAnisotropic, general purpose
ProdIndexHorWellBorisovBorisovIsotropic only (kv = kh)
ProdIndexHorWellGRJGRJElliptical drainage, anisotropic
ProdIndexHorWellRDRenard-DupuyRectangular drainage
ProdIndexHorWellBOBabu-OdehFull positioning, most accurate
ProdIndexHorWellBO2Babu-OdehSimplified, centered well

Drainage Area Functions

FunctionMethodDescription
DrainageAreaHorWell1JoshiElliptical drainage area
DrainageAreaHorWell2JoshiRectangular + rounded ends


References

  1. Joshi, S.D. (1988). "Augmentation of Well Productivity with Slant and Horizontal Wells." Journal of Petroleum Technology, 40(6), pp. 729-739. SPE-15375-PA.

  2. Borisov, J.P. (1984). Oil Production Using Horizontal and Multiple Deviation Wells. Moscow: Nedra Publishing (translated by J.Strauss, R&D Library Translation).

  3. Giger, F.M., Reiss, L.H., and Jourdan, A.P. (1984). "The Reservoir Engineering Aspects of Horizontal Drilling." SPE-13024-MS, presented at SPE Annual Technical Conference, Houston, TX, September 16-19.

  4. Renard, G. and Dupuy, J.M. (1991). "Formation Damage Effects on Horizontal-Well Flow Efficiency." Journal of Petroleum Technology, 43(7), pp. 786-869. SPE-19414-PA.

  5. Babu, D.K. and Odeh, A.S. (1989). "Productivity of a Horizontal Well." SPE Reservoir Engineering, 4(4), pp. 417-421. SPE-18298-PA.

  6. Economides, M.J., Brand, C.W., and Frick, T.P. (1996). "Well Configurations in Anisotropic Reservoirs." SPE Formation Evaluation, 11(4), pp. 257-262. SPE-27980-PA.

  7. Joshi, S.D. (1991). Horizontal Well Technology. Tulsa, OK: PennWell Publishing Company.

Well Performance
well performancehorizontal wellsproductivity indexJoshiBorisovGiger-Reiss-JourdanRenard-DupuyBabu-Odehanisotropydrainage area
Can't find what you're looking for?Request Documentation
This website uses cookies to enhance your experience and analyze site usage. By clicking "Accept", you consent to the use of cookies for analytics purposes. Read our privacy policy