Maximum velocity of a falling film

Input(s)

\(\rho\): Density \(\left(\mathrm{kg} / \mathrm{m}^{3}\right)\)

g: Gravitational Acceleration \(\left(\mathrm{m} / \mathrm{s}^{2}\right)\)

\(\delta\): Film Thickness (m)

\(\beta\): Angle of Inclination w.r.t. Direction of Gravity (rad)

\(\mu\): Viscosity \((\mathrm{kg} /(\mathrm{ms}))\)

Output(s)

\(V_{\text {zmax }}\): Maximum Velocity \((\mathrm{m} / \mathrm{s})\)

Formula(s)

\[ \mathrm{V}_{\mathrm{zmax}}=\frac{\rho * \mathrm{~g} *\left(\delta^{2}\right) * \cos (\beta)}{2 * \mu} \]

Reference(s)

Bird, R.B., Stewart, W.E. and Lightfoot, E.N. (2002). Transport Phenomena (Second Ed.). John Wiley & Sons, Chapter: 2, Page: 45.


Related

An unhandled error has occurred. Reload 🗙