# Mass rate of flow of a falling film

## Input(s)

\(\rho\): Density \(\left(\mathrm{kg} / \mathrm{m}^{3}\right)\)

g: Gravitational Acceleration \(\left(\mathrm{m} / \mathrm{s}^{2}\right)\)

\(\delta\): Film Thickness (m)

W: Width (m)

\(\mu\): Kinematic Viscosity \((\mathrm{kg} /(\mathrm{ms}))\)

\(\beta\): Angle of Inclination w.r.t Direction of Gravity (rad)

## Output(s)

\(\omega\): Mass Rate of Flow \((\mathrm{kg} / \mathrm{s})\)

## Formula(s)

\[
\omega=\left(\rho^{2} * \mathrm{~g} * \delta^{3} * \mathrm{~W} * \frac{\cos (\beta)}{3 * \mu}\right)
\]

## Reference(s)

Bird, R.B., Stewart, W.E. and Lightfoot, E.N. (2002). Transport Phenomena (Second Ed.). John Wiley & Sons, Chapter: 2, Page: 46.