Mass rate of flow through annulus

Input(s)

po: Pressure at initial point \((\mathrm{Pa})\)

\(\mathrm{pL}\): Pressure at point \(\mathrm{L}(\mathrm{Pa})\)

\(\mathrm{R}\): Radius \((\mathrm{m})\)

\(\rho\): Density \(\left(\mathrm{kg} / \mathrm{m}^{3}\right)\)

\(\mathrm{mu}\): Viscosity \((\mathrm{kg} /(\mathrm{ms}))\)

L: Length \((\mathrm{m})\)

\(\mathrm{K}\): Boltzmann Constant \(\left(\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-2} \mathrm{~K}^{-1}\right)\)

Output(s)

\(\Psi\): Mass Rate of Flow \((\mathrm{kg} / \mathrm{s})\)

Formula(s)

\[ \Psi=\frac{\pi *(p o-p L) * R^{4} * \rho}{8 * \mu * L} *\left(\left(1-K^{4}\right)-\frac{\left(1-K^{2}\right)^{2}}{\ln \left(\frac{1}{K}\right)}\right) \]

Reference(s)

Transport Phenomena, Second Edition, Bird, Chapter 2.


Related

An unhandled error has occurred. Reload 🗙