Velocity distribution of a falling film with variable viscosity

Input(s)

\(\rho\): Density \(\left(\mathrm{kg} / \mathrm{m}^{3}\right)\)

g: Gravitational Acceleration \(\left(\mathrm{m} / \mathrm{s}^{2}\right)\)

\(\delta\): Film Thickness (m)

\(\mathrm{x}\): Distance in Cartesian Coordinate (x)

\(\mu\): Viscosity \((\mathrm{kg} /(\mathrm{ms}))\)

\(\beta\): Angle of Inclination w.r.t Direction of Gravity (rad)

Output(s)

\(v_{z}\): Velocity Distribution \((\mathrm{m} / \mathrm{s})\)

Formula(s)

\[ \mathrm{v}_{\mathrm{z}}=\frac{\left(\rho * \mathrm{~g} * \delta^{2}\right) * \cos (\beta) *\left(1-\left(\frac{\mathrm{x}}{\delta}\right)^{2}\right)}{2 * \mu} \]

Reference(s)

Bird, R.B., Stewart, W.E. and Lightfoot, E.N. (2002). Transport Phenomena (Second Ed.). John Wiley & Sons, Chapter: 2, Page: 45 .


Related

An unhandled error has occurred. Reload 🗙