Average velocity over the cross section of a falling film

Input(s)

\(\rho\): Density \(\left(\mathrm{kg} / \mathrm{m}^{3}\right)\)

g: Gravitational Acceleration \(\left(\mathrm{m} / \mathrm{s}^{2}\right)\)

\(\boldsymbol{\delta}\): Film Thickness \((\mathrm{m})\)

\(\mu\): Viscosity \((\mathrm{kg} /(\mathrm{ms}))\)

\(\beta\): Angle of Inclination w.r.t Direction of Gravity (rad)

\(v_{z, \text { max }}\): The Maximum Velocity at \(\mathrm{x}=0(\mathrm{~m} / \mathrm{s})\)

Output(s)

\(v_{z}\): Average Velocity \((\mathrm{m} / \mathrm{s})\)

Formula(s)

\[ v_{z}=\frac{\rho * g * \delta^{2} * \cos (\beta)}{3 * \mu} \]

Reference(s)

Bird, R.B., Stewart, W.E., and Lightfoot, E.N. (2002). Transport Phenomena (Second ed.). John Wiley & Sons, Chapter: 2, Page: 45.


Related

An unhandled error has occurred. Reload 🗙