Mass rate of flow of a falling film

Input(s)

ρ\rho: Density (kg/m3)\left(\mathrm{kg} / \mathrm{m}^{3}\right)

g: Gravitational Acceleration (m/s2)\left(\mathrm{m} / \mathrm{s}^{2}\right)

δ\delta: Film Thickness (m)

W: Width (m)

μ\mu: Kinematic Viscosity (kg/(ms))(\mathrm{kg} /(\mathrm{ms}))

β\beta: Angle of Inclination w.r.t Direction of Gravity (rad)

Output(s)

ω\omega: Mass Rate of Flow (kg/s)(\mathrm{kg} / \mathrm{s})

Formula(s)

ω=(ρ2 gδ3 Wcos(β)3μ)\omega=\left(\rho^{2} * \mathrm{~g} * \delta^{3} * \mathrm{~W} * \frac{\cos (\beta)}{3 * \mu}\right)

Reference(s)

Bird, R.B., Stewart, W.E. and Lightfoot, E.N. (2002). Transport Phenomena (Second Ed.). John Wiley & Sons, Chapter: 2, Page: 46.


Related

An unhandled error has occurred. Reload 🗙