Estimating fraction of heat injected in latent form (steam-drive)

Input(s)

CwC_{w}: Specific Heat of Water (BTU/lbm F)

TiT_{i}: Injection Temperature (F)\left({ }^{\circ} \mathrm{F}\right)

TaT_{a}: Ambient Temperature (F)\left({ }^{\circ} \mathrm{F}\right)

fsdh f_{\text {sdh }}: Steam Quality (fraction)

LhcL_{h c}: Latent Heat of Condensation (BTU/lbm)

Output(s)

fhvf_{h v}: Fraction of Heat Injected in Latent Form (fraction)

Formula(s)

fhv=(1+((Cw)TiTafsdh Lhc))1\mathrm{f}_{\mathrm{hv}}=\left(1+\left(\left(\mathrm{C}_{\mathrm{w}}\right) * \frac{\mathrm{T}_{\mathrm{i}}-\mathrm{T}_{\mathrm{a}}}{\mathrm{f}_{\mathrm{sdh}} * \mathrm{~L}_{\mathrm{hc}}}\right)\right)^{-1}

Reference(s)

Pratts, M. (1986). Thermal Recovery Monograph Vol. 7. Society of Petroleum Engineers, Houston, Page: 77.


Related

An unhandled error has occurred. Reload 🗙