Estimating volume of steam injection (steam-drive)

Input(s)

\(C_{w}\): Specific Heat Capacity of Water (BTU/LBM F)

\(T_{s b}\): Temperature of Steam at Boiler Outlet \(\left({ }^{\circ} \mathrm{F}\right)\)

\(T_{a}\): Ambient Temperature \(\left({ }^{\circ} \mathrm{F}\right)\)

\(f_{s b}\): Fraction of Steam at Boiler Outlet (fraction)

\(T_{i d h}\): Injection Temperature Down Hole \(\left({ }^{\circ} \mathrm{F}\right)\)

\(T_{i}\): Injection Temperature \(\left({ }^{\circ} \mathrm{F}\right)\)

\(f_{s d h}\): Fraction of Steam Down Hole (fraction)

\(L_{v d h}\): Latent Heat of Vaporization Down Hole (BTU/lbm)

\(L_{v b}\): Latent Heat of Vaporization at Boiler Outlet (BTU/lbm)

Output(s)

Ws, eq: Volume of Steam injected, as Water Equivalent (BBL/d)

Formula(s)

\[ \text { Ws, eq }=\left(2.853 * 10^{-6}\right) * \frac{\mathrm{C}_{\mathrm{w}} *\left(\mathrm{~T}_{\mathrm{sb}}-\mathrm{T}_{\mathrm{a}}\right)+\mathrm{f}_{\mathrm{sb}} * \mathrm{~L}_{\mathrm{vb}}}{\mathrm{C}_{\mathrm{w}} *\left(\mathrm{~T}_{\mathrm{idh}}-\mathrm{T}_{\mathrm{i}}\right)+\mathrm{f}_{\mathrm{sdh}} * \mathrm{~L}_{\mathrm{vdh}}} \]

Reference(s)

Pratts, M. (1986). Thermal Recovery Monograph Vol. 7. Society of Petroleum Engineers, Houston, Page: 78.


Related

An unhandled error has occurred. Reload 🗙