Average velocity over the cross section of a falling film

Input(s)

ρ\rho: Density (kg/m3)\left(\mathrm{kg} / \mathrm{m}^{3}\right)

g: Gravitational Acceleration (m/s2)\left(\mathrm{m} / \mathrm{s}^{2}\right)

δ\boldsymbol{\delta}: Film Thickness (m)(\mathrm{m})

μ\mu: Viscosity (kg/(ms))(\mathrm{kg} /(\mathrm{ms}))

β\beta: Angle of Inclination w.r.t Direction of Gravity (rad)

vz, max v_{z, \text { max }}: The Maximum Velocity at x=0( m/s)\mathrm{x}=0(\mathrm{~m} / \mathrm{s})

Output(s)

vzv_{z}: Average Velocity (m/s)(\mathrm{m} / \mathrm{s})

Formula(s)

vz=ρgδ2cos(β)3μv_{z}=\frac{\rho * g * \delta^{2} * \cos (\beta)}{3 * \mu}

Reference(s)

Bird, R.B., Stewart, W.E., and Lightfoot, E.N. (2002). Transport Phenomena (Second ed.). John Wiley & Sons, Chapter: 2, Page: 45.


Related

An unhandled error has occurred. Reload 🗙