Analysis of a post-fracture pressure buildup test with wellbore-storage distortion

Input(s)

qgq_{g}: Gas flow rate (MSCF/day)

BgB_{g}: Gas formation Volume Factor (RB/MSCF)

pDp_{D}: Dimensionless Pressure (dimensionless)

\varnothing: Porosity (dimensionless)

ctc_{t}: Compressibility (1/psi)(1 / \mathrm{psi})

μ\mu: Viscosity (cP)(\mathrm{cP})

h\mathrm{h}: Formation Thickness (ft)

t(LDt_{\left(L_{\rangle_{D}}\right.}: Time of end of linear or pseudo radial flow from plot (dimensionless)

CrDC_{r D}: Dimensionless fracture conductivity (dimensionless)

CfDC_{f D}: Dimensionless Wellbore storage coefficient (dimensionless)

LfL_{f}: Length of fracture (ft)(\mathrm{ft})

k\mathrm{k}: Permeability (mD)(\mathrm{mD})

ΔtAE\Delta t_{A E}: Equivalent Adjusted delta time from derivative curve (h)

Output(s)

C: Well bore storage coefficient (bbl/psi)

wfkfw_{f k_{f}}: Min Fracture conductivity for infinite conductive fracture (mDft)(\mathrm{mD} \mathrm{ft})

LfMPL_{f M P}: Length of fracture from match point analysis (ft)

(ΔPa)MP\left(\Delta P_{a}\right)_{M P}: Adjusted Pressure difference at match point from plot (psi)

Formula(s)

C=(141.2qgBgμkh)(pD)MPwfkf=((0.0002637kμct)(ΔtAEt(Lf)D)MP)12LfMP=(hctLf20.8936)CfD(ΔPa)MP=3.14kCrDLf\begin{gathered} C=\left(141.2 * q_{g} * B_{g} * \frac{\mu}{k * h}\right) *\left(p_{D}\right)_{M P} \\ w_{f k_{f}}=\left(\left(\frac{0.0002637 * k}{\varnothing * \mu * c_{t}}\right) *\left(\frac{\Delta t_{A E}}{t_{\left(L_{f}\right)_{D}}}\right)_{M P}\right)^{\frac{1}{2}} \\ L_{f M P}=\left(\emptyset * h * c_{t} * \frac{L_{f}^{2}}{0.8936}\right) * C_{f D} \\ \left(\Delta P_{a}\right)_{M P}=3.14 * k * C_{r D} * L_{f} \end{gathered}

Reference(s)

Lee, J., Rollins J.B., and Spivey J.P. 2003, Pressure Transient Testing, Vol. 9, SPE Textbook Series, Vol. 9 , Henry L. Doherty Memorial Fund of AIME, Richardson, Texas, SPE, Chapter: 6, Page: 127.


Related

An unhandled error has occurred. Reload 🗙