Analysis of a post-fracture - Constant-rate flow test with boundary effects

Input(s)

\(\mathrm{q}_{\mathrm{g}}\): Gas Flow Rate (MSCF/day)

\(\mathrm{B}_{\mathrm{g}}\): Gas formation Volume Factor \((\mathrm{RB} / \mathrm{MSCF})\)

\(\mathrm{m}\): Slope from Curve (psi/cycle)

\(\mathrm{m}_{\mathrm{L}}\): Slope from linear Region of Curve (psi/cycle)

\(\mathrm{p}_{\mathrm{ai}}\): Initial Adjusted Well Pressure (psi)

\(\mathrm{p}_{\mathrm{ahr}}\): Adjusted Well pressure at \(t=1 \mathrm{~h}(\mathrm{psi})\)

\(\mathrm{p}_{\mathrm{D}}\): Dimensionless Pressure (dimensionless)

Ø: Porosity (dimensionless)

\(\mathrm{c}_{\mathrm{t}}\): Compressibility (1/psi)

\(\mathrm{r}_{\mathrm{w}}\): Radius of Wellbore \((\mathrm{ft})\)

\(\mu\): Viscosity \((\mathrm{cP})\)

\(\mathrm{h}\): Formation Thickness ( \(\mathrm{ft}\) )

\(t_{L f D}\): Time of end of Linear or Pseudo Radial flow from Plot (dimensionless)

\(\Delta \mathrm{t}_{\mathrm{a}}\): Adjusted Delta Time from Derivative Curve (h)

Output(s)

\(\mathrm{k}\): Permeability \((\mathrm{mD})\)

\(\mathrm{L}_{\mathrm{fPR}}\): Length of Fracture for Pseudo Radial Flow (ft)

\(\mathrm{L}_{\mathrm{fL}}\): Length of Fracture for Linear Flow (ft)

\(\mathrm{L}_{\mathrm{fMP}}\): Length of Fracture from Match Point Analysis \((\mathrm{ft})\)

\(\mathrm{s}\): Skin Factor (dimensionless)

\(\Delta \mathrm{P}_{\mathrm{a}_{\mathrm{MP}}}\): Adjusted Pressure Difference at Match Point from Plot (psi)

Formula(s)

\[ \begin{gathered} \mathrm{k}=162.6 * \mathrm{q}_{\mathrm{g}} * \mathrm{~B}_{\mathrm{g}} * \frac{\mu}{\mathrm{m} * \mathrm{~h}} \\ \mathrm{~L}_{\mathrm{fPR}}=1.151 *\left(\left(\frac{\mathrm{p}_{\mathrm{ai}}-\mathrm{p}_{\mathrm{ahr}}}{\mathrm{m}}\right)-\log \left(\frac{\mathrm{k}}{\emptyset * \mu * \mathrm{c}_{\mathrm{t}} * \mathrm{r}_{\mathrm{w}}^{2}}\right)+3.23\right) \\ \mathrm{L}_{\mathrm{fL}}=2 * \mathrm{r}_{\mathrm{w}} * 2.71^{-\mathrm{s}} \\ \mathrm{L}_{\mathrm{fMP}}=4.064 * \mathrm{q}_{\mathrm{g}} * \frac{\mathrm{B}_{\mathrm{g}}}{\mathrm{m}_{\mathrm{L}} * \mathrm{~h} * \mathrm{k}^{0.5}} *\left(\left(\frac{\mu}{\varnothing} * \mathrm{c}_{\mathrm{t}}\right)^{\frac{1}{2}}\right) \\ \mathrm{s}=\left(141.2 * \mathrm{q}_{\mathrm{g}} * \mathrm{~B}_{\mathrm{g}} * \frac{\mu}{\mathrm{k}} * \mathrm{~h}\right) *\left(\mathrm{p}_{\mathrm{D}}\right) \\ \Delta \mathrm{P}_{\mathrm{a}_{\mathrm{MP}}}=\left(\left(\frac{0.0002637 * \mathrm{k}}{\varnothing * \mu * \mathrm{c}_{\mathrm{t}}}\right) *\left(\frac{\Delta \mathrm{t}_{\mathrm{a}}}{\mathrm{t}_{\mathrm{LfD}}}\right)\right)^{\frac{1}{2}} \end{gathered} \]

Reference(s)

Lee, J., Rollins J.B., and Spivey J.P. 2003, Pressure Transient Testing, Vol. 9, SPE Textbook Series, Vol. 9, Henry L. Doherty Memorial Fund of AIME, Richardson, Texas, SPE, Chapter: 6, Page: 121.


Related

An unhandled error has occurred. Reload 🗙