Analysis of a flow test with smoothly varying rates

Input(s)

t1t_{1}: Time at Pwf1P_{w f 1} from Given Values or Trendline (h)

t2t_{2}: Time at Pwf2P_{w f 2} from Given Values or Trendline (h)

q1\mathrm{q}_{1}: Flow Rate at Pwf1(STB/\mathrm{P}_{\mathrm{wf} 1}(\mathrm{STB} / day ))

q2\mathrm{q}_{2}: Flow Rate at Pwf2(STB/\mathrm{P}_{\mathrm{wf} 2}(\mathrm{STB} / day ))

pi\mathrm{p}_{\mathrm{i}}: Initial Pressure (psi)

pwf2\mathrm{p}_{\mathrm{wf} 2}: Wellflow Pressure at Point 2 from Given Values or Trendline (psi)

pwf1\mathrm{p}_{\mathrm{wf} 1}: Wellflow Pressure at Point 1 from Given Values or Trendline (psi)

pwf\mathrm{p}_{\mathrm{wf}}: Pressure Value at t=1 h(psi)t=1 \mathrm{~h}(\mathrm{psi})

q: Flow Rate (STB/day)

B: Volume Factor (RB/STB)

h\mathrm{h}: Thickness of Reservoir (ft)

μ\mu: Viscosity of Oil (cP)

\varnothing: Porosity (fraction)

ctc_{t}: Compressibility (1/psi)

rw\mathrm{r}_{\mathrm{w}}: Wellbore Radius (ft)

Output(s)

m\mathrm{m}: Slope of Line (dimensionless)

k\mathrm{k}: Permeability (mD)(\mathrm{mD})

s: Skin Factor (dimensionless)

Formula(s)

m=(pipwf2q2)(pipwf1q1)log(t2)log(t1)k=162.6 Bμm h s=1.151(1 m(pipwfq)log(kμctrw2)+3.23)\begin{gathered} \mathrm{m}=\frac{\left(\frac{\mathrm{p}_{\mathrm{i}}-\mathrm{p}_{\mathrm{wf} 2}}{\mathrm{q}_{2}}\right)-\left(\frac{\mathrm{p}_{\mathrm{i}}-\mathrm{p}_{\mathrm{wf} 1}}{\mathrm{q}_{1}}\right)}{\log \left(\mathrm{t}_{2}\right)-\log \left(\mathrm{t}_{1}\right)} \\ \mathrm{k}=162.6 * \mathrm{~B} * \frac{\mu}{\mathrm{m} * \mathrm{~h}} \\ \mathrm{~s}=1.151 *\left(\frac{1}{\mathrm{~m}\left(\frac{\mathrm{p}_{\mathrm{i}}-\mathrm{p}_{\mathrm{wf}}}{\mathrm{q}}\right)}-\log \left(\frac{\mathrm{k}}{\emptyset * \mu * \mathrm{c}_{\mathrm{t}} * \mathrm{r}_{\mathrm{w}}^{2}}\right)+3.23\right) \end{gathered}

Reference(s)

Lee, J., Rollins, J. B., & Spivey, J. P. (2003). Pressure Transient Testing (Vol. 9). Richardson, Texas: Society of Petroleum Engineers, Page: 31.


Related

An unhandled error has occurred. Reload 🗙