Volumetric heat capacity of a reservoir

Input(s)

Ms\mathrm{M}_{\mathrm{s}}: Volumetric Heat Capacity of Solids (btu/ft 3 F{ }^{3} \mathrm{~F} )

\emptyset: Porosity (fraction)

So\mathrm{S}_{\mathrm{o}}: Oil Saturation (fraction)

Mo\mathrm{M}_{\mathrm{o}}: Volumetric Heat Capacity of Oil (btu/ ft3 F\mathrm{ft}^{3} \mathrm{~F} )

Sw\mathrm{S}_{\mathrm{w}}: Water Saturation (fraction)

Mw\mathrm{M}_{\mathrm{w}}: Volumetric Heat Capacity of Water (btu/ft ft3 F\mathrm{ft}^{3} \mathrm{~F} )

Sg\mathrm{S}_{\mathrm{g}}: Saturation of Gas (fraction)

f: Fraction of non-condensable Gases (fraction)

Mg\mathrm{M}_{\mathrm{g}}: Volumetric Heat Capacity of Gases (btu/ft 3 F{ }^{3} \mathrm{~F} )

ρs\rho_{\mathrm{s}}: Density of Solids (g/cc)(\mathrm{g} / \mathrm{cc})

Cw\mathrm{C}_{\mathrm{w}}: Isobaric Specific Heat of Water (btu/lb F)

ΔT\Delta \mathrm{T}: Temperature Differential (K)(\mathrm{K})

Lv\mathrm{L}_{\mathrm{v}}: Latent Heat of Vaporization (btu/lb)

Output(s)

Mr\mathrm{M}_{\mathrm{r}}: Volumetric Heat Capacity of Reservoir (btu/ft ft3 F\mathrm{ft}^{3} \mathrm{~F} )

Formula(s)

Mr=(1)Ms+Mo So+ SwMw+ Sg(fMg+(1f)(LvρsΔT+ρsCw))\mathrm{M}_{\mathrm{r}}=(1-\varnothing) * \mathrm{M}_{\mathrm{s}}+\varnothing * \mathrm{M}_{\mathrm{o}} * \mathrm{~S}_{\mathrm{o}}+\varnothing * \mathrm{~S}_{\mathrm{w}} * \mathrm{M}_{\mathrm{w}}+\emptyset * \mathrm{~S}_{\mathrm{g}} *\left(\mathrm{f} * \mathrm{M}_{\mathrm{g}}+(1-\mathrm{f}) *\left(\frac{\mathrm{L}_{\mathrm{v}} * \rho_{\mathrm{s}}}{\Delta \mathrm{T}}+\rho_{\mathrm{s}} * \mathrm{C}_{\mathrm{w}}\right)\right)

Reference(s)

Prats, M. 1986. Thermal Recovery. Society of Petroleum Engineers, New York, Chapter: 12, Page: 164.


Related

An unhandled error has occurred. Reload 🗙