# Gas capacity of separator

## Input(s)

$$\mathrm{K}_{\mathrm{s}}$$: Separator Coefficient $$(\mathrm{ft} / \mathrm{s})$$

$$\mathrm{d}$$: Total Internal Diameter of Separator $$(\mathrm{ft})$$

F: Fraction of Total Area Available to Gas (fraction)

z: Compressibility Factor (dimensionless)

P: Separation Pressure (psi)

$$\mathrm{P}_{\mathrm{s}}$$: Base Pressure (psi)

$$\mathrm{T}$$: Absolute Separation Temperature (K) $$\mathrm{T}_{\mathrm{s}}$$: Base Temperature $$(\mathrm{K})$$

$$\rho_{1}$$: Liquid Density $$(\mathrm{g} / \mathrm{cc})$$

$$\rho_{\mathrm{g}}$$: Gas Density $$(\mathrm{g} / \mathrm{cc})$$

## Output(s)

$$q_{s}$$: Gas Rate $$\left(\mathrm{ft}^{3} / \mathrm{d}\right)$$

## Formula(s)

$\mathrm{q}_{\mathrm{s}}=67824 * \mathrm{~K}_{\mathrm{s}} *\left(\mathrm{~d}^{2}\right) * \mathrm{~F} *\left(\frac{1}{\mathrm{z}}\right) *\left(\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{s}}}\right) *\left(\frac{\mathrm{T}_{\mathrm{s}}}{\mathrm{T}}\right) *\left(\frac{\rho_{\mathrm{l}}-\rho_{\mathrm{g}}}{\rho_{\mathrm{g}}}\right)^{0.5}$

## Reference(s)

John M. Campbell, Gas Conditioning and Processing, Campbell Petroleum Series, Oklahoma, 1992, Vol. 2, Page: 74.

An unhandled error has occurred. Reload 🗙