Velocity profile of fluids in flow of two adjacent immiscible fluids

Input(s)

Po\boldsymbol{P}_{\boldsymbol{o}}: Pressure at Initial Point (Pa)(\mathrm{Pa})

PL\boldsymbol{P}_{\boldsymbol{L}}: Pressure at Point L (Pa)(\mathrm{Pa}) b: Half Plane Thickness (m)

x\mathrm{x}: Vertical Distance (m)(\mathrm{m})

L: Length (m)

μI\boldsymbol{\mu}_{\boldsymbol{I}}: Viscosity of More Dense and Viscous Fluid (kg/(ms))(\mathrm{kg} /(\mathrm{ms}))

μII\boldsymbol{\mu}_{\boldsymbol{I I}}: Viscosity of Less Dense and Viscous Fluid (kg/(ms))(\mathrm{kg} /(\mathrm{ms}))

Output(s)

vzIv_{z I}: Average Velocity (m/s)(\mathrm{m} / \mathrm{s})

vzIIv_{z I I}: Average Velocity (m/s)(\mathrm{m} / \mathrm{s})

Formula(s)

vzI=(PoPL) b22μI L(2μIμI+μII+μIμIImuI+μIIxb(xb)2)vZII=(PoPL) b22μII L(2μIIμI+μII+μIμIIμI+μIIxb(xb)2)\begin{aligned} & \mathrm{v}_{\mathrm{zI}}=\frac{\left(\mathrm{P}_{\mathrm{o}}-\mathrm{P}_{\mathrm{L}}\right) * \mathrm{~b}^{2}}{2 * \mu_{\mathrm{I}} * \mathrm{~L}} *\left(\frac{2 * \mu_{\mathrm{I}}}{\mu_{\mathrm{I}}+\mu_{\mathrm{II}}}+\frac{\mu_{\mathrm{I}}-\mu_{\mathrm{II}}}{\mathrm{mu}_{\mathrm{I}}+\mu_{\mathrm{II}}} * \frac{\mathrm{x}}{\mathrm{b}}-\left(\frac{\mathrm{x}}{\mathrm{b}}\right)^{2}\right) \\ & \mathrm{v}_{\mathrm{ZII}}=\frac{\left(\mathrm{P}_{\mathrm{o}}-\mathrm{P}_{\mathrm{L}}\right) * \mathrm{~b}^{2}}{2 * \mu_{\mathrm{II}} * \mathrm{~L}} *\left(\frac{2 * \mu_{\mathrm{II}}}{\mu_{\mathrm{I}}+\mu_{\mathrm{II}}}+\frac{\mu_{\mathrm{I}}-\mu_{\mathrm{II}}}{\mu_{\mathrm{I}}+\mu_{\mathrm{II}}} * \frac{\mathrm{x}}{\mathrm{b}}-\left(\frac{\mathrm{x}}{\mathrm{b}}\right)^{2}\right) \end{aligned}

Reference(s)

Bird, R.B., Stewart, W.E. and Lightfoot, E.N. (2002). Transport Phenomena (Second Ed.). John Wiley & Sons, Chapter: 2, Page: 57.


Related

An unhandled error has occurred. Reload 🗙