Average velocity of fluids in flow of two adjacent immiscible fluids

Input(s)

\(\boldsymbol{P}_{\boldsymbol{o}}\): Pressure at Initial Point \((\mathrm{Pa})\)

\(\boldsymbol{P}_{L}\): Pressure at Point L \((\mathrm{Pa})\)

\(\boldsymbol{b}\): Distance \((\mathrm{m})\)

\(\boldsymbol{\mu}_{\boldsymbol{I}}\): Viscosity of Phase I, Denser, More Viscous Fluid \((\mathrm{kg} /(\mathrm{ms}))\)

\(\boldsymbol{\mu}_{\boldsymbol{I I}}\): Viscosity of phase II, Less Dense, Less Viscous Fluid \((\mathrm{kg} /(\mathrm{ms}))\)

\(\boldsymbol{L}\): Length \((\mathrm{m})\)

Output(s)

\(v_{z I}\): Average Velocity for Phase I \((\mathrm{m} / \mathrm{s})\)

\(\boldsymbol{v}_{z I I}\): Average Velocity for Phase II \((\mathrm{m} / \mathrm{s})\)

Formula(s)

\[ \begin{aligned} & v_{z I}=\frac{\left(P_{o}-P_{L}\right) * b^{2}}{12 * \mu_{I} * L} *\left(\frac{7 * \mu_{I}+\mu_{I I}}{\mu_{I}+\mu_{I I}}\right) \\ & v_{z I I}=\frac{\left(P_{o}-P_{L}\right) * b^{2}}{12 * \mu_{I I} * L} *\left(\frac{\mu_{I}+7 * \mu_{I I}}{\mu_{I}+\mu_{I I}}\right) \end{aligned} \]

Reference(s)

Bird, R.B., Stewart, W.E., and Lightfoot, E.N. (2002). Transport Phenomena (Second ed.). John Wiley & Sons, Chapter: 2, Page: 58.


Related

An unhandled error has occurred. Reload 🗙