# Pore volume through squared method in tight gas reservoirs

## Input(s)

$\mu_{\mathrm{g}, \text { avg: }} $$Average Gas Viscosity$$(\mathrm{cP})$

$$\mathrm{z}_{\mathrm{avg}}$$: Compressibility Factor (dimensionless)

$$\mathrm{q}_{\mathrm{i}}$$: Initial Gas Rate (MSCF/day)

$$\mu_{\mathrm{gi}}$$: Initial Gas Viscosity $$(\mathrm{cP})$$

$$\mathrm{c}_{\mathrm{ti}}$$: Initial Total Compressibility $$(1 / \mathrm{psi})$$

$$\mathrm{P}_{\mathrm{i}}$$: Initial Pressure (psi)

$$\mathrm{P}_{\mathrm{wf}}$$: Bottom-hole Flowing Pressure (psi)

$$\mathrm{D}_{\mathrm{i}}$$: Decline Rate $$\left(\mathrm{day}^{-1}\right)$$

$$\mathrm{T}$$: Temperature $$\left({ }^{\circ} \mathrm{R}\right)$$

## Output(s)

PV: Pore Volume (dimensionless)

## Formula(s)

$\mathrm{PV}=\frac{28.27 * \mathrm{~T} * \mu_{\mathrm{g}, \text { avg }} * \mathrm{z}_{\mathrm{avg}}}{\mu_{\mathrm{gi}} * \mathrm{c}_{\mathrm{ti}} *\left(\mathrm{P}_{\mathrm{i}}^{2}-\mathrm{P}_{\mathrm{wf}}^{2}\right)} *\left(\frac{\mathrm{q}_{\mathrm{i}}}{\mathrm{D}_{\mathrm{i}}}\right)$

## Reference(s)

Ahmed, T., McKinney, P.D. 2005. Advanced Reservoir Engineering, Gulf Publishing of Elsevier, Chapter: 3, Page: 252 .

## Related

### Communication between compartments in tight gas reservoirs

An unhandled error has occurred. Reload 🗙