Minimum number of jobs to survive in a minimum chance scenario

Input(s)

Z: Number of Standard Deviation corresponds to a Certain Change (dimensionless)

σ\sigma: Standard Deviation of a Risky Job reduced to Present Value (fraction)

XEX_{E}: Present Worth Expectation per a Risky Job ($)

Output(s)

n\mathrm{n}: Minimum Number of Jobs to Survive in a Minimum Chance Scenario (dimensionless)

Formula(s)

n=(Zσ2XE)2\mathrm{n}=\left(\frac{-\mathrm{Z} \cdot \sigma}{2 \mathrm{X}_{\mathrm{E}}}\right)^{2}

Reference(s)

Serpen, U., Petroleum Economics, Course Notes, ITU Petroleum and Natural Gas Engineering, Istanbul, Turkey, (2008) Page: 99.


Related

An unhandled error has occurred. Reload 🗙