Initial capital needed to survive in a minimum chance scenario

Input(s)

Z: Number of Standard Deviation corresponds to a Certain Change (dimensionless)

\(\sigma\): Standard Deviation of a Risky Job reduced to Present Value (fraction)

\(X_{E}\): Present Worth Expectation per a Risky Job ($)

Output(s)

\(\mathrm{M}_{\mathrm{G}}\): Initial Capital Needed to Survive in a Minimum Chance Scenario (dimensionless)

Formula(s)

\[ \mathrm{M}_{\mathrm{G}}=\frac{(\mathrm{Z} \cdot \sigma)^{2}}{4 \mathrm{X}_{\mathrm{E}}} \]

Reference(s)

Serpen, U., Petroleum Economics, Course Notes, ITU Petroleum and Natural Gas Engineering, Istanbul, Turkey, (2008) Page: 99.


Related

An unhandled error has occurred. Reload 🗙