Flow in a liquid-liquid ejector pump

Input(s)

v2\boldsymbol{v}_{\mathbf{2}}: Outlet Velocity (ft/s)(\mathrm{ft} / \mathrm{s})

ρ\rho: Density of Fluid (g/cc)(\mathrm{g} / \mathrm{cc})

Output(s)

v0\boldsymbol{v}_{\mathbf{0}}: Inlet Velocity (ft/s)(\mathrm{ft} / \mathrm{s})

Ev\boldsymbol{E}_{v}: Energy Dissipation (ft2/s2)\left(\mathrm{ft}^{2} / \mathrm{s}^{2}\right)

p2p1\boldsymbol{p}_{\mathbf{2}}-\boldsymbol{p}_{\mathbf{1}}: Pressure Drop (psi)

Formula(s)

vo=1.5v2p2p1=(118)ρ(vo2)Ev=(5144)(vo2)\begin{gathered} \mathrm{v}_{\mathrm{o}}=1.5 * \mathrm{v}_{2} \\ \mathrm{p}_{2}-\mathrm{p}_{1}=\left(\frac{1}{18}\right) * \rho *\left(\mathrm{v}_{\mathrm{o}}^{2}\right) \\ \mathrm{E}_{\mathrm{v}}=\left(\frac{5}{144}\right) *\left(\mathrm{v}_{\mathrm{o}}^{2}\right) \end{gathered}

Reference(s)

Bird, R.B., Stewart, W.E. and Lightfoot, E.N. (2002). Transport Phenomena (Second Ed.). John Wiley & Sons, Chapter: 7, Page: 211.


Related

An unhandled error has occurred. Reload 🗙