Terminal velocity in a separator

Input(s)

g: Acceleration Due to Gravity $$\left(\mathrm{ft} / \mathrm{s}^{2}\right)$$

$$\mathrm{D}_{\mathrm{p}}$$: Particle Diameter $$(\mathrm{ft})$$

$$\mathrm{N}$$: Drag Coefficient (fraction)

$$\rho_{\mathrm{p}}$$: Particle Density $$(\mathrm{g} / \mathrm{cc})$$

$$\rho_{\mathrm{f}}$$: Fluid Density $$(\mathrm{g} / \mathrm{cc})$$

A: Flow Regime Constant (dimensionless) (dimensionless)

$$\mu$$: Viscosity $$(\mathrm{cP})$$

Output(s)

$$v_{t}$$: Terminal Velocity of a Particle falling through a fluid by the pull of Gravity $$(\mathrm{ft} / \mathrm{s})$$

Formula(s)

$\mathrm{v}_{\mathrm{t}}=\left(\frac{4 * \mathrm{~g} *\left(\mathrm{D}_{\mathrm{p}}^{\mathrm{N}+1}\right) *\left(\rho_{\mathrm{p}}-\rho_{\mathrm{f}}\right)}{3 * \mathrm{~A} *\left(\mu^{\mathrm{N}}\right) *\left(\rho_{\mathrm{f}}^{1-\mathrm{N}}\right)}\right)^{\frac{1}{2-\mathrm{N}}}$

Reference(s)

John M. Campbell, Gas Conditioning and Processing, Campbell Petroleum Series, Oklahoma, 1992, Vol. 2, Page: 71 .

Related

Gas mass velocity in separator

An unhandled error has occurred. Reload 🗙