Water breakthrough correlations in vertical wells - Sobocinski and Cornelius

Input(s)

h: Oil Column Thickness (ft)

hth_{t}: Height of the Apex of the Water Cone above the Average Water-Oil Contact (ft)

kvk_{v}: Vertical Permeability (mD)(\mathrm{mD})

khk_{h}: Horizontal Permeability (mD)

ρw\rho_{w}: Water Density (g/cc)(\mathrm{g} / \mathrm{cc})

μo\mu_{o}: Oil Viscosity (cP)(\mathrm{cP})

ρo\rho_{o}: Oil Density (g/cc)(\mathrm{g} / \mathrm{cc})

qoq_{o}: Oil Production Rate (STB/D)

BoB_{o}: Oil Formation Volume Factor (RB/STB)

α\alpha: Constant Value of 0.5 for M<1\mathrm{M}<1 and 0.6 for M\mathrm{M} between 1 and 10 (RB/STB)

M: Water Oil Mobility Ratio (fraction)

t\mathrm{t}: Breakthrough Time (days)

\varnothing: Porosity (fraction)

Output(s)

Z: Dimensionless Cone Height (feet)

tDt_{D}: Dimensionless Breakthrough Time (days)

Formula(s)

Z=0.00307(ρwρo)khhhtμoqoBotD=0.00137(ρwρo)kh(1+Mα)tμoh(khkv)\begin{gathered} Z=\frac{0.00307 *\left(\rho_{w}-\rho_{o}\right) * k_{h} * h * h_{t}}{\mu_{o} * q_{o} * B_{o}} \\ t_{D}=\frac{0.00137 *\left(\rho_{w}-\rho_{o}\right) * k_{h} *\left(1+M^{\alpha}\right) * t}{\mu_{o} * \emptyset * h *\left(\frac{k_{h}}{k_{v}}\right)} \end{gathered}

Reference(s)

Sobocinski, D.P., Cornelius, A.J. 1965. A Correlation for Predicting Water Coning Time. SPE ATCE, Houston, Texas.


Related

An unhandled error has occurred. Reload 🗙