Stress component near normal faulting in reservoir

Input(s)

\(\alpha\): Biot (dimensionless)

\(v\): Poisson (dimensionless)

\(\mathrm{Sh}_{\text {max }}\): Maximum Principal Stress (psi)

\(\mathrm{Sh}_{\text {min }}\): Minimum Principal Stress (psi)

\(\mathrm{dP}\): Change in Pore Pressure (psi)

\(\theta\): Fault Orientation (degrees)

Output(s)

A: Constant a Value (dimensionless)

\(\mathrm{S}_{\mathrm{x}}\): Stress in \(\mathrm{X}\) Direction (psi)

\(\mathrm{S}_{\mathrm{y}}\): Stress in \(\mathrm{Y}\) Direction (psi)

\(\mathrm{T}_{\mathrm{xy}}\): Normal Stress in Y Direction (psi)

Formula(s)

\[ \begin{gathered} \mathrm{A}=\alpha * \frac{1-2 * v}{1-\mathrm{v}} \\ \mathrm{Sx}=\mathrm{Sh}_{\text {max }}-\mathrm{A} * \mathrm{dP}-\mathrm{A} * \frac{\mathrm{dP}}{2} *\left(1-\cos \left(2 * \theta * \frac{\pi}{180}\right)\right) \\ \mathrm{Sy}=\mathrm{Sh}_{\text {min }}-\mathrm{A} * \mathrm{dP}-\mathrm{A} * \frac{\mathrm{dP}}{2} *\left(1+\cos \left(2 * \theta * \frac{\pi}{180}\right)\right) \\ \text { Txy }=\mathrm{A} * \frac{\mathrm{dP}}{2} * \sin \left(2 * \theta * \frac{\pi}{180}\right) \end{gathered} \]

Reference(s)

Mark D. Zoback, Reservoir Geomechanics, Cambridge University Press, UK, Page: 381.

An unhandled error has occurred. Reload 🗙