Radiated energy flux

Input(s)

c: Speed of Light (ft/s)(\mathrm{ft} / \mathrm{s})

h\mathrm{h}: Planck's Constant (lbft2/s)\left(\mathrm{lb} \mathrm{ft}^{2} / \mathrm{s}\right)

λ\lambda: Wavelength (ft)

k\mathrm{k}: Stefan-Boltzmann Constant (BTU/hft2R4)\left(\mathrm{BTU} / \mathrm{h} \mathrm{ft}^{2}{ }^{\circ} \mathrm{R}^{4}\right)

T: Temperature (K)(\mathrm{K})

Output(s)

q: Radiated Energy Flux from a Black Surface in the Wavelength Range (BTU/ft2 s3)\left(B T U / \mathrm{ft}^{2} \mathrm{~s}^{3}\right)

Formula(s)

q=2π(c2) h(λ5)(exp(c hλk T)1)\mathrm{q}=\frac{2 * \pi *\left(\mathrm{c}^{2}\right) * \mathrm{~h}}{\left(\lambda^{5}\right) *\left(\exp \left(\frac{\mathrm{c} * \mathrm{~h}}{\lambda * \mathrm{k} * \mathrm{~T}}\right)-1\right)}

Reference(s)

Bird, R.B., Stewart, W.E. and Lightfoot, E.N. (2002). Transport Phenomena (Second Ed.). John Wiley & Sons, Chapter: 16, Page: 494.

An unhandled error has occurred. Reload 🗙