Pseudo-steady state productivity of horizontal Wells - Method 1


A: Drainage Area \(\left(\mathrm{ft}^{2}\right)\)

s: Skin Factor (dimensionless)

D: Turbulence Coefficient (1/BOPD for oil and 1/MSCFD for gas)

C: Shape Factor Conversion Constant \(=1.386\) (dimensionless)

\(s_{C A h}\): Shape-Related Skin Factor (dimensionless)

\(\mathrm{h}\): Thickness of Reservoir \((\mathrm{ft})\)

\(k_{v}\): Vertical Permeability \((\mathrm{mD})\)

\(k_{h}\): Horizontal Permeability \((\mathrm{mD})\)

\(\mathrm{k}\): Permeability \((\mathrm{mD})\)

q: Flow Rate (BOPD for oil and MSCFD for gas)

L: Fracture Length \((\mathrm{ft})\)

\(r_{w}\): Radius of Wellbore (ft)

\(\mu_{o}\): Viscosity of Oil (cP)

\(B_{o}\): Oil Formation Volume Factor (RB/STB)


\(r_{e}\): Effective Radius of Drainage Area (ft)

\(s_{m}\): Mechanical Skin Factor (dimensionless)

\(s_{f}\): Skin Factor of an Infinite-conductivity, Fully Penetrating Fracture of Length L (dimensionless)

\(J_{h}\): Pseudo-steady State Productivity of a Horizontal Well (bbl/day/psi)


\[ \begin{gathered} r_{e}=\left(\frac{A}{\pi}\right)^{0.5} \\ s_{m}=s * \frac{h}{L} *\left(\frac{k_{h}}{k_{v}}\right)^{0.5} \\ s_{f}=-\ln \left(\frac{L}{4 * r_{w}}\right) \\ J_{h}=\frac{0.007078 * k * \frac{h}{\mu_{o} * B_{o}}}{\ln \left(\frac{r_{e}}{r_{w}}\right)-A+s_{f}+s_{m}+s_{C A h}-C+D * q} \end{gathered} \]


Joshi, S. D. 1991, Horizontal Well Technology. Tulsa, Oklahoma: PennWell Publishing Company. Chapter: 7, Page: 221.


An unhandled error has occurred. Reload 🗙