Pressure drop across perforations in gas wells

Input(s)

qgq_{g}: Gas Flow Rate through Perforation (bbl/d)(\mathrm{bbl} / \mathrm{d})

nn: Number of Perforations (dimensionless)

μg\mu_{g}: Gas Viscosity (cP)

ZZ: Gas Supercompressibility Factor (dimensionless)

T: Formation Temperature (R)\left(\mathrm{R}^{\circ}\right)

LpL_{p} : Perforation Length (ft)

kpdk_{p d}: Perforation Damaged Zone Permeability (mD)

rpr_{p} : Perforation Radius ( ft\mathrm{ft} )

rpdr_{p d}: Perforation Damaged Zone Radius (ft)

γg\gamma_{g}: Gas Specific Gravity (( air =1.0)=1.0)

Output(s)

psfp_{s f}: Pressure at the Sandface (psi)

pwbp_{w b} : Pressure in the Wellbore (psi)

βpd\beta_{p d} : Velocity Coefficient of Turbulence Factor (1/ft)(1 / \mathrm{ft})

Formula(s)

psf2pwb2=(A(qgn))+(B(qgn)2)A=1.424103μg(Z)(T)LpkpdIn(rpdrp)B=(3.16)(1012)βpdγg(Z)(T)Lp2(1rp1rpd)βpd=(2.33)(1010)k1.201\begin{gathered} p_{s f}^{2}-p_{w b}^{2}=\left(A \cdot\left(\frac{q_{g}}{n}\right)\right)+\left(B \cdot\left(\frac{q_{g}}{n}\right)^{2}\right) \\ A=\frac{1.424 \cdot 10^{3} \cdot \mu_{g}(Z)(T)}{L_{p} k_{p d}} \operatorname{In}\left(\frac{r_{p d}}{r_{p}}\right) \\ B=\frac{(3.16)\left(10^{-12}\right) \beta_{p d} \gamma_{g}(Z)(T)}{L_{p}^{2}}\left(\frac{1}{r_{p}}-\frac{1}{r_{p d}}\right) \\ \beta_{p d}=(2.33)\left(10^{10}\right) k^{-1.201} \end{gathered}

Reference(s)

Bell, W. T., Sukup, R. A., & Tariq, S. M. (1995). Perforating. Henry L. Doherty Memorial Fund of AIME, Society of Petroleum Engineers, Page: 62.


Related

An unhandled error has occurred. Reload 🗙