Pressure distribution in a creeping flow around a sphere

Input(s)

po\boldsymbol{p}_{\boldsymbol{o}}: Pressure in the Plane z=0\mathrm{z}=0 far away from the Sphere (Pa)(\mathrm{Pa})

ρ\rho: Density (kg/m3)\left(\mathrm{kg} / \mathrm{m}^{3}\right)

g\mathrm{g}: Gravitational Acceleration (m/s2)\left(\mathrm{m} / \mathrm{s}^{2}\right)

z: Direction (m)(\mathrm{m})

μ\mu: Viscosity (kg/(ms))(\mathrm{kg} /(\mathrm{ms}))

vv_{\infty}: Velocity as rr Goes to Infinity (m/s)(\mathrm{m} / \mathrm{s})

R\mathrm{R}: Radius (m)(\mathrm{m})

r: Cylindrical Shell of Thickness (m)

Output(s)

p: Pressure Distribution (Pa)(\mathrm{Pa})

Formula(s)

p=po(ρ gz)((32)(μvR)(Rr)2)cos(θ)\mathrm{p}=\mathrm{p}_{\mathrm{o}}-(\rho * \mathrm{~g} * \mathrm{z})-\left(\left(\frac{3}{2}\right) *\left(\mu * \frac{\mathrm{v}_{\infty}}{\mathrm{R}}\right) *\left(\frac{\mathrm{R}}{\mathrm{r}}\right)^{2}\right) * \cos (\theta)

Reference(s)

Bird, R.B., Stewart, W.E. and Lightfoot, E.N. (2002). Transport Phenomena (Second Ed.). John Wiley & Sons, Chapter: 2, Page: 59.


Related

An unhandled error has occurred. Reload 🗙