Heat loss over an incremental length of a well (two-phase flow)

Input(s)

TsT_{s}: Temperature in the Well (Saturation Temperature) (F)\left({ }^{\circ} \mathrm{F}\right)

TeT_{e}: Undisturbed Formation Temperature (F)\left({ }^{\circ} \mathrm{F}\right)

y: Distance from the Bottom of the Well (ft)

kk: Thermal Conductivity of Earth (=33.6BTU/(ftdF))\left(=33.6 \mathrm{BTU} /\left(\mathrm{ft} \mathrm{d}^{\circ} \mathrm{F}\right)\right)

f(t)f(t): Dimensionless Time Function that Represents the Transient Heat Transfer to the formation (dimensionless)

Output(s)

dq:d q: Heat Loss over an Incremental Length of the Wellbore (BTU/h)

Formula(s)

dq=2πk(TsTe)f(t)dy\mathrm{dq}=\frac{2 \pi \mathrm{k}\left(\mathrm{T}_{\mathrm{s}}-\mathrm{T}_{\mathrm{e}}\right)}{\mathrm{f}(\mathrm{t})} \mathrm{dy}

Reference(s)

Ramey Jr, H. J. (1981). Reservoir Engineering Assessment of Geothermal Systems. Department of Petroleum Engineering, Stanford University. Page: 6.12.


Related

An unhandled error has occurred. Reload 🗙