# Flow of power law fluid through a narrow slit

## Input(s)

W: Width $$(\mathrm{cm})$$

B: Breadth $$(\mathrm{cm})$$

L: Length $$(\mathrm{cm})$$

$$\rho$$: Density of Fluid $$(\mathrm{g} / \mathrm{cc})$$

$$\boldsymbol{P}_{\boldsymbol{O}}$$: Input Pressure $$(\mathrm{Pa})$$

$$\boldsymbol{P}_{\boldsymbol{L}}$$: Output Pressure $$(\mathrm{Pa})$$

$$\mathrm{m}$$: Power Law Constant (dimensionless)

n: Power Law Constant 2 (dimensionless)

## Output(s)

w: Mass Rate of Flow $$(\mathrm{g} / \mathrm{s})$$

## Formula(s)

$\mathrm{w}=\left(\frac{2 * \mathrm{~W} *\left(\mathrm{~B}^{2}\right) * \rho}{\left(\frac{1}{\mathrm{n}}\right)+2}\right) *\left(\left(\frac{\left(\mathrm{P}_{\mathrm{O}}-\mathrm{P}_{\mathrm{L}}\right) * \mathrm{~B}}{\mathrm{~m} * \mathrm{~L}}\right)^{\frac{1}{\mathrm{n}}}\right)$

## Reference(s)

Bird, R.B., Stewart, W.E. and Lightfoot, E.N. (2002). Transport Phenomena (Second Ed.). John Wiley & Sons, Chapter: 8, Page: 243 .

## Related

### Tangential annular flow of a power law fluid

An unhandled error has occurred. Reload 🗙