# Flow in a liquid-liquid ejector pump

## Input(s)

$$\boldsymbol{v}_{\mathbf{2}}$$: Outlet Velocity $$(\mathrm{ft} / \mathrm{s})$$

$$\rho$$: Density of Fluid $$(\mathrm{g} / \mathrm{cc})$$

## Output(s)

$$\boldsymbol{v}_{\mathbf{0}}$$: Inlet Velocity $$(\mathrm{ft} / \mathrm{s})$$

$$\boldsymbol{E}_{v}$$: Energy Dissipation $$\left(\mathrm{ft}^{2} / \mathrm{s}^{2}\right)$$

$$\boldsymbol{p}_{\mathbf{2}}-\boldsymbol{p}_{\mathbf{1}}$$: Pressure Drop (psi)

## Formula(s)

$\begin{gathered} \mathrm{v}_{\mathrm{o}}=1.5 * \mathrm{v}_{2} \\ \mathrm{p}_{2}-\mathrm{p}_{1}=\left(\frac{1}{18}\right) * \rho *\left(\mathrm{v}_{\mathrm{o}}^{2}\right) \\ \mathrm{E}_{\mathrm{v}}=\left(\frac{5}{144}\right) *\left(\mathrm{v}_{\mathrm{o}}^{2}\right) \end{gathered}$

## Reference(s)

Bird, R.B., Stewart, W.E. and Lightfoot, E.N. (2002). Transport Phenomena (Second Ed.). John Wiley & Sons, Chapter: 7, Page: 211.

## Related

### Retention time in a liquid-liquid vessel

An unhandled error has occurred. Reload 🗙