Flow in a liquid-liquid ejector pump

Input(s)

\(\boldsymbol{v}_{\mathbf{2}}\): Outlet Velocity \((\mathrm{ft} / \mathrm{s})\)

\(\rho\): Density of Fluid \((\mathrm{g} / \mathrm{cc})\)

Output(s)

\(\boldsymbol{v}_{\mathbf{0}}\): Inlet Velocity \((\mathrm{ft} / \mathrm{s})\)

\(\boldsymbol{E}_{v}\): Energy Dissipation \(\left(\mathrm{ft}^{2} / \mathrm{s}^{2}\right)\)

\(\boldsymbol{p}_{\mathbf{2}}-\boldsymbol{p}_{\mathbf{1}}\): Pressure Drop (psi)

Formula(s)

\[ \begin{gathered} \mathrm{v}_{\mathrm{o}}=1.5 * \mathrm{v}_{2} \\ \mathrm{p}_{2}-\mathrm{p}_{1}=\left(\frac{1}{18}\right) * \rho *\left(\mathrm{v}_{\mathrm{o}}^{2}\right) \\ \mathrm{E}_{\mathrm{v}}=\left(\frac{5}{144}\right) *\left(\mathrm{v}_{\mathrm{o}}^{2}\right) \end{gathered} \]

Reference(s)

Bird, R.B., Stewart, W.E. and Lightfoot, E.N. (2002). Transport Phenomena (Second Ed.). John Wiley & Sons, Chapter: 7, Page: 211.


Related

An unhandled error has occurred. Reload 🗙