Flow in a liquid-liquid ejector pump
Input(s)
\(\boldsymbol{v}_{\mathbf{2}}\): Outlet Velocity \((\mathrm{ft} / \mathrm{s})\)
\(\rho\): Density of Fluid \((\mathrm{g} / \mathrm{cc})\)
Output(s)
\(\boldsymbol{v}_{\mathbf{0}}\): Inlet Velocity \((\mathrm{ft} / \mathrm{s})\)
\(\boldsymbol{E}_{v}\): Energy Dissipation \(\left(\mathrm{ft}^{2} / \mathrm{s}^{2}\right)\)
\(\boldsymbol{p}_{\mathbf{2}}-\boldsymbol{p}_{\mathbf{1}}\): Pressure Drop (psi)
Formula(s)
\[
\begin{gathered}
\mathrm{v}_{\mathrm{o}}=1.5 * \mathrm{v}_{2} \\
\mathrm{p}_{2}-\mathrm{p}_{1}=\left(\frac{1}{18}\right) * \rho *\left(\mathrm{v}_{\mathrm{o}}^{2}\right) \\
\mathrm{E}_{\mathrm{v}}=\left(\frac{5}{144}\right) *\left(\mathrm{v}_{\mathrm{o}}^{2}\right)
\end{gathered}
\]
Reference(s)
Bird, R.B., Stewart, W.E. and Lightfoot, E.N. (2002). Transport Phenomena (Second Ed.). John Wiley & Sons, Chapter: 7, Page: 211.