Fick's law of binary diffusion

Input(s)

ρ\rho: Density (g/cc)(\mathrm{g} / \mathrm{cc})

DAB\boldsymbol{D}_{\boldsymbol{A} \boldsymbol{B}}: Diffusivity (cm2/s)\left(\mathrm{cm}^{2} / \mathrm{s}\right)

da\boldsymbol{d}_{\boldsymbol{a}}: Mass Fraction of A (fraction)

dy: Difference in Distance (cm)(\mathrm{cm})

Output(s)

jAyj_{A y}: Mass Flux (g/cm2 s)\left(\mathrm{g} / \mathrm{cm}^{2} \mathrm{~s}\right)

Formula(s)

jAy=DAB(ρ)dwady\mathrm{j}_{\mathrm{Ay}}=\mathrm{D}_{\mathrm{AB}} *(-\rho) * \frac{\mathrm{dw}_{\mathrm{a}}}{\mathrm{dy}}

Reference(s)

Bird, R.B., Stewart, W.E. and Lightfoot, E.N. (2002). Transport Phenomena (Second Ed.). John Wiley & Sons, Chapter: 17, Page: 515.


Related

An unhandled error has occurred. Reload 🗙