Dynamically coupled linear flow - Formation invasion

Input(s)

xfx_{f}: Transient Invasion Front (in.)

xf,ox_{f, o}: Initial Displacement, i.e., Spurt (in.)

L: Lineal Core Length (in.)

pmp_{m}: Constant Mud Pressure (psi)

prp_{r}: Constant Reservoir Pressure (psi)

eff: \emptyset_{\text {eff: }} \quad Effective Rock Porosity (fraction)

c\varnothing_{c}: Mudcake Porosity (fraction)

k1k_{1}: Mudcake Permeability to Filtrate (mD)

k2k_{2}: Rock Permeability to Filtrate (mD)(\mathrm{mD})

k3k_{3}: Rock Permeability to "Oil" (mD)

μf\mu_{f}: Mud Filtrate Viscosity (cP)(\mathrm{cP})

μo\mu_{o}: Viscosity of "Oil" or Formation Fluid (cP)

fsf_{s}: Mud Solid Fraction (fraction)

Output(s)

xf(t)\mathrm{x}_{\mathrm{f}}(\mathrm{t}): Minimum Number of Jobs to Survive in a Minimum Chance Scenario (dimensionless)

Formula(s)

xf(t)=H+{H2+2(Hxf,o+1/2xf,o2+Gt)}G={k1(pmpr)/μfeff}/{μok1μfk3k1k2efffs{(1c)(1fs)}}H=[xf,oefffs{(1c)(1fs)}μok1Lμfk3]/{μok1μfk3k1k2efffs{(1c)(1fs)}}\begin{gathered} \mathrm{x}_{\mathrm{f}}(\mathrm{t})=-H+\sqrt{\left\{H^{2}+2\left(H x_{f, o}+1 / 2 x_{f, o}^{2}+G t\right)\right\}} \\ G=-\left\{k_{1}\left(p_{m}-p_{r}\right) / \mu_{f} \emptyset_{e f f}\right\} /\left\{\frac{\mu_{o} k_{1}}{\mu_{f} k_{3}}-\frac{k_{1}}{k_{2}}-\frac{\emptyset_{e f f} f_{s}}{\left\{\left(1-\emptyset_{c}\right)\left(1-f_{s}\right)\right\}}\right\} \\ H=\left[\frac{x_{f, o} \emptyset_{e f f} f_{s}}{\left\{\left(1-\emptyset_{c}\right)\left(1-f_{s}\right)\right\}}-\frac{\mu_{o} k_{1} L}{\mu_{f} k_{3}}\right] /\left\{\frac{\mu_{o} k_{1}}{\mu_{f} k_{3}}-\frac{k_{1}}{k_{2}}-\frac{\emptyset_{e f f} f_{s}}{\left\{\left(1-\emptyset_{c}\right)\left(1-f_{s}\right)\right\}}\right\} \end{gathered}

Reference(s)

Chin, W. C. (1995). Formation Invasion, Page: 16.


Related

An unhandled error has occurred. Reload 🗙