Draining of a cylindrical tank

Input(s)

μ\mu: Fluid Viscosity (kg/(ms))(\mathrm{kg} /(\mathrm{ms}))

L: Height of the Pipe (m)

H: Height of the Cylindrical Tank (m)

D: Diameter of the Pipe (m)

R\mathrm{R}: Radius of the Cylindrical Tank (m)

ρ\rho: Fluid Density (kg/m3)\left(\mathrm{kg} / \mathrm{m}^{3}\right)

g: Gravitational Acceleration (m/s2)\left(\mathrm{m} / \mathrm{s}^{2}\right)

Output(s)

tefflux \boldsymbol{t}_{\text {efflux }}: Efflux Time (s)

Formula(s)

tefflux =128μ LR2ρ gD4ln(1+HL)\mathrm{t}_{\text {efflux }}=\frac{128 * \mu * \mathrm{~L} * \mathrm{R}^{2}}{\rho * \mathrm{~g} * \mathrm{D}^{4}} * \ln \left(1+\frac{\mathrm{H}}{\mathrm{L}}\right)

Reference(s)

Bird, R.B., Stewart, W.E. and Lightfoot, E.N. (2002). Transport Phenomena (Second Ed.). John Wiley & Sons, Chapter: 7, Page: 228.


Related

An unhandled error has occurred. Reload 🗙