Dimensionless pressure drop across a skin at the well face

Input(s)

kk: Effective Permeability of Flowing Phase (D)

hh: Net Formation Thickness (m)

PiP_{i}: Initial Reservoir Pressure (psi)

P1hrP_{1 h r}: Pressure at 1 hour on semi-log straight line or its extension (psi)

PwsP_{w s}: Shut in Pressure (psi)

PwfP_{w f}: Bottomhole Pressure at a flowing well (psi)

vscv_{s c}: Specific Volume at Standard Conditions (cc/g)(\mathrm{cc} / \mathrm{g})

qq: Production Rate (m3/h)\left(\mathrm{m}^{3} / \mathrm{h}\right)

B: Formation Volume Factor (Reservoir Volume/Standard Volume)

μ\mu: Viscosity of Flowing Fluid (cP)

ctc_{t}: Total System Effective Isothermal Compressibility (kg/cm2)1\left(\mathrm{kg} / \mathrm{cm}^{2}\right)^{-1}

rwr_{w}: Well Radius (m)(\mathrm{m})

mm: Slope of Semi-Log Graph (kg/cm2)/log\left(\mathrm{kg} / \mathrm{cm}^{2}\right) / \log cycle for Liquid

\varnothing: Porosity (Per cent)

Output(s)

PDwP_{D w}: Dimensionless Pressure at the well face (dimensionless)

ss: Skin Effect (dimensionless)

Formula(s)

PDw+s=kh(PiPws)0.4568vscqBμs=1.151[(P1hr2Pwf2)mlog10kμctrw2+0.0919]\begin{gathered} P_{D w}+s=\frac{k h\left(P_{i}-P_{w s}\right)}{0.4568 v_{s c} q B \mu} \\ s=1.151\left[\frac{\left(P_{1 h r}{ }^{2}-P_{w f}{ }^{2}\right)}{m}-\log _{10} \frac{k}{\varnothing \mu c_{t} r_{w}^{2}}+0.0919\right] \end{gathered}

Reference(s)

Ramey Jr, H. J. (1981). Reservoir Engineering Assessment of Geothermal Systems. Department of Petroleum Engineering, Stanford University, Page: (5.13).


Related

An unhandled error has occurred. Reload 🗙